Useful sources
- methods: fit, transform, predict
- IO: numpy.ndarray with the shape that has sample data number in the first placeholder. ex. (number_of_samples, feature_dim).
some classes expect 1D array as y. ex. SGDRegressor
- Polynomial features
# m = 100
# X.shape == (m, 1)
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
all(X_poly[:,1] == X_poly[:,0]**2) # True
- StandardScaler
from sklearn.preprocessing import StandardScaler
std_scaler = StandardScaler()
- MinMaxScaler
- LinearRegression
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
- Ridge
from sklearn.linear_model import Ridge
ridge_reg = Ridge(alpha)
- train_test_split
from sklearn.model_selection import train_test_split
- mean_squared_error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, y_pred)