Skip to content

Instantly share code, notes, and snippets.

@wenfahu
Last active December 21, 2016 08:38
Show Gist options
  • Save wenfahu/33451303622bc8d48d38d68b6874eb8a to your computer and use it in GitHub Desktop.
Save wenfahu/33451303622bc8d48d38d68b6874eb8a to your computer and use it in GitHub Desktop.
inception triplet face
name: "inception_bn"
layer{
name: 'data'
type: 'Python'
top: 'data'
top: 'label'
python_param {
module: 'data_layer'
layer: 'DataLayer'
}
}
# layer {
# name: "data"
# type: "Data"
# top: "data"
# top: "label"
# include {
# phase: TRAIN
# }
# transform_param {
# mirror: true
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# }
# data_param {
# source: "/home/wenfahu/googlenet_triplet/lfw_lmdb/train_lmdb"
# batch_size: 60
# backend: LMDB
# }
# }
# layer {
# name: "data"
# type: "Data"
# top: "data"
# top: "label"
# include {
# phase: TEST
# }
# transform_param {
# mirror: false
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# }
# data_param {
# source: "/home/wenfahu/googlenet_triplet/lfw_lmdb/val_lmdb"
# batch_size: 20
# backend: LMDB
# }
# }
layer {
name: "conv1_7x7_s2"
type: "Convolution"
bottom: "data"
top: "conv1_7x7_s2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv1_7x7_s2_bn"
type: "BatchNorm"
bottom: "conv1_7x7_s2"
top: "conv1_7x7_s2"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv1_7x7_relu"
type: "ReLU"
bottom: "conv1_7x7_s2"
top: "conv1_7x7_s2"
}
layer {
name: "pool1_3x3_s2"
type: "Pooling"
bottom: "conv1_7x7_s2"
top: "pool1_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2_3x3_reduce"
type: "Convolution"
bottom: "pool1_3x3_s2"
top: "conv2_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2_3x3_reduce_bn"
type: "BatchNorm"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv2_3x3_reduce_relu"
type: "ReLU"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3_reduce"
}
layer {
name: "conv2_3x3"
type: "Convolution"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2_3x3_bn"
type: "BatchNorm"
bottom: "conv2_3x3"
top: "conv2_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv2_3x3_relu"
type: "ReLU"
bottom: "conv2_3x3"
top: "conv2_3x3"
}
layer {
name: "pool2_3x3_s2"
type: "Pooling"
bottom: "conv2_3x3"
top: "pool2_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_3a_1x1"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_1x1_bn"
type: "BatchNorm"
bottom: "inception_3a_1x1"
top: "inception_3a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_1x1"
type: "ReLU"
bottom: "inception_3a_1x1"
top: "inception_3a_1x1"
}
layer {
name: "inception_3a_3x3_reduce"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3_reduce"
}
layer {
name: "inception_3a_3x3"
type: "Convolution"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_3x3_bn"
type: "BatchNorm"
bottom: "inception_3a_3x3"
top: "inception_3a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_3x3"
type: "ReLU"
bottom: "inception_3a_3x3"
top: "inception_3a_3x3"
}
layer {
name: "inception_3a_5x5_reduce"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5_reduce"
}
layer {
name: "inception_3a_5x5"
type: "Convolution"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_5x5_bn"
type: "BatchNorm"
bottom: "inception_3a_5x5"
top: "inception_3a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_5x5"
type: "ReLU"
bottom: "inception_3a_5x5"
top: "inception_3a_5x5"
}
layer {
name: "inception_3a_pool"
type: "Pooling"
bottom: "pool2_3x3_s2"
top: "inception_3a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3a_pool_proj"
type: "Convolution"
bottom: "inception_3a_pool"
top: "inception_3a_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_3a_pool_proj"
top: "inception_3a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_pool_proj"
type: "ReLU"
bottom: "inception_3a_pool_proj"
top: "inception_3a_pool_proj"
}
layer {
name: "inception_3a_output"
type: "Concat"
bottom: "inception_3a_1x1"
bottom: "inception_3a_3x3"
bottom: "inception_3a_5x5"
bottom: "inception_3a_pool_proj"
top: "inception_3a_output"
}
layer {
name: "inception_3b_1x1"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_1x1_bn"
type: "BatchNorm"
bottom: "inception_3b_1x1"
top: "inception_3b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_1x1"
type: "ReLU"
bottom: "inception_3b_1x1"
top: "inception_3b_1x1"
}
layer {
name: "inception_3b_3x3_reduce"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3_reduce"
}
layer {
name: "inception_3b_3x3"
type: "Convolution"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_3x3_bn"
type: "BatchNorm"
bottom: "inception_3b_3x3"
top: "inception_3b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_3x3"
type: "ReLU"
bottom: "inception_3b_3x3"
top: "inception_3b_3x3"
}
layer {
name: "inception_3b_5x5_reduce"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5_reduce"
}
layer {
name: "inception_3b_5x5"
type: "Convolution"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_5x5_bn"
type: "BatchNorm"
bottom: "inception_3b_5x5"
top: "inception_3b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_5x5"
type: "ReLU"
bottom: "inception_3b_5x5"
top: "inception_3b_5x5"
}
layer {
name: "inception_3b_pool"
type: "Pooling"
bottom: "inception_3a_output"
top: "inception_3b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3b_pool_proj"
type: "Convolution"
bottom: "inception_3b_pool"
top: "inception_3b_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_3b_pool_proj"
top: "inception_3b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_pool_proj"
type: "ReLU"
bottom: "inception_3b_pool_proj"
top: "inception_3b_pool_proj"
}
layer {
name: "inception_3b_output"
type: "Concat"
bottom: "inception_3b_1x1"
bottom: "inception_3b_3x3"
bottom: "inception_3b_5x5"
bottom: "inception_3b_pool_proj"
top: "inception_3b_output"
}
layer {
name: "pool3_3x3_s2"
type: "Pooling"
bottom: "inception_3b_output"
top: "pool3_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_4a_1x1"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_1x1_bn"
type: "BatchNorm"
bottom: "inception_4a_1x1"
top: "inception_4a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_1x1"
type: "ReLU"
bottom: "inception_4a_1x1"
top: "inception_4a_1x1"
}
layer {
name: "inception_4a_3x3_reduce"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3_reduce"
}
layer {
name: "inception_4a_3x3"
type: "Convolution"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 208
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_3x3_bn"
type: "BatchNorm"
bottom: "inception_4a_3x3"
top: "inception_4a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_3x3"
type: "ReLU"
bottom: "inception_4a_3x3"
top: "inception_4a_3x3"
}
layer {
name: "inception_4a_5x5_reduce"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5_reduce"
}
layer {
name: "inception_4a_5x5"
type: "Convolution"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_5x5_bn"
type: "BatchNorm"
bottom: "inception_4a_5x5"
top: "inception_4a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_5x5"
type: "ReLU"
bottom: "inception_4a_5x5"
top: "inception_4a_5x5"
}
layer {
name: "inception_4a_pool"
type: "Pooling"
bottom: "pool3_3x3_s2"
top: "inception_4a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4a_pool_proj"
type: "Convolution"
bottom: "inception_4a_pool"
top: "inception_4a_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4a_pool_proj"
top: "inception_4a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_pool_proj"
type: "ReLU"
bottom: "inception_4a_pool_proj"
top: "inception_4a_pool_proj"
}
layer {
name: "inception_4a_output"
type: "Concat"
bottom: "inception_4a_1x1"
bottom: "inception_4a_3x3"
bottom: "inception_4a_5x5"
bottom: "inception_4a_pool_proj"
top: "inception_4a_output"
}
# layer {
# name: "loss1_ave_pool"
# type: "Pooling"
# bottom: "inception_4a_output"
# top: "loss1_ave_pool"
# pooling_param {
# pool: AVE
# kernel_size: 5
# stride: 3
# }
# }
# layer {
# name: "loss1_conv"
# type: "Convolution"
# bottom: "loss1_ave_pool"
# top: "loss1_conv"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# convolution_param {
# num_output: 128
# pad: 0
# kernel_size: 1
# stride: 1
# weight_filler {
# type: "xavier"
# std: 1
# }
# bias_filler {
# type: "constant"
# value: 0.2
# }
# }
# }
# layer {
# name: "loss1_conv_bn"
# type: "BatchNorm"
# bottom: "loss1_conv"
# top: "loss1_conv"
# batch_norm_param {
# use_global_stats: false
# }
# }
# layer {
# name: "loss1_relu_conv"
# type: "ReLU"
# bottom: "loss1_conv"
# top: "loss1_conv"
# }
# layer {
# name: "loss1_fc"
# type: "InnerProduct"
# bottom: "loss1_conv"
# top: "loss1_fc"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# inner_product_param {
# num_output: 1024
# weight_filler {
# type: "xavier"
# std: 1
# }
# bias_filler {
# type: "constant"
# value: 0.2
# }
# }
# }
# layer {
# name: "loss1_relu_fc"
# type: "ReLU"
# bottom: "loss1_fc"
# top: "loss1_fc"
# }
# layer {
# name: "loss1_drop_fc"
# type: "Dropout"
# bottom: "loss1_fc"
# top: "loss1_fc"
# dropout_param {
# dropout_ratio: 0.7
# }
# }
# layer {
# name: "loss1_classifier"
# type: "InnerProduct"
# bottom: "loss1_fc"
# top: "loss1_classifier"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# inner_product_param {
# num_output: 1000
# weight_filler {
# type: "xavier"
# }
# bias_filler {
# type: "constant"
# value: 0
# }
# }
# }
# layer {
# name: "loss1_loss"
# type: "SoftmaxWithLoss"
# bottom: "loss1_classifier"
# bottom: "label"
# top: "loss1_loss"
# loss_weight: 0.3
# }
# layer {
# name: "loss1_accuracy_top1"
# type: "Accuracy"
# bottom: "loss1_classifier"
# bottom: "label"
# top: "loss1_accuracy_top1"
# include {
# phase: TEST
# }
# }
# layer {
# name: "loss1_accuracy_top5"
# type: "Accuracy"
# bottom: "loss1_classifier"
# bottom: "label"
# top: "loss1_accuracy_top5"
# include {
# phase: TEST
# }
# accuracy_param {
# top_k: 5
# }
# }
layer {
name: "inception_4b_1x1"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_1x1_bn"
type: "BatchNorm"
bottom: "inception_4b_1x1"
top: "inception_4b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_1x1"
type: "ReLU"
bottom: "inception_4b_1x1"
top: "inception_4b_1x1"
}
layer {
name: "inception_4b_3x3_reduce"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 112
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3_reduce"
}
layer {
name: "inception_4b_3x3"
type: "Convolution"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 224
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_3x3_bn"
type: "BatchNorm"
bottom: "inception_4b_3x3"
top: "inception_4b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_3x3"
type: "ReLU"
bottom: "inception_4b_3x3"
top: "inception_4b_3x3"
}
layer {
name: "inception_4b_5x5_reduce"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5_reduce"
}
layer {
name: "inception_4b_5x5"
type: "Convolution"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_5x5_bn"
type: "BatchNorm"
bottom: "inception_4b_5x5"
top: "inception_4b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_5x5"
type: "ReLU"
bottom: "inception_4b_5x5"
top: "inception_4b_5x5"
}
layer {
name: "inception_4b_pool"
type: "Pooling"
bottom: "inception_4a_output"
top: "inception_4b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4b_pool_proj"
type: "Convolution"
bottom: "inception_4b_pool"
top: "inception_4b_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4b_pool_proj"
top: "inception_4b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_pool_proj"
type: "ReLU"
bottom: "inception_4b_pool_proj"
top: "inception_4b_pool_proj"
}
layer {
name: "inception_4b_output"
type: "Concat"
bottom: "inception_4b_1x1"
bottom: "inception_4b_3x3"
bottom: "inception_4b_5x5"
bottom: "inception_4b_pool_proj"
top: "inception_4b_output"
}
layer {
name: "inception_4c_1x1"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_1x1_bn"
type: "BatchNorm"
bottom: "inception_4c_1x1"
top: "inception_4c_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_1x1"
type: "ReLU"
bottom: "inception_4c_1x1"
top: "inception_4c_1x1"
}
layer {
name: "inception_4c_3x3_reduce"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3_reduce"
}
layer {
name: "inception_4c_3x3"
type: "Convolution"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_3x3_bn"
type: "BatchNorm"
bottom: "inception_4c_3x3"
top: "inception_4c_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_3x3"
type: "ReLU"
bottom: "inception_4c_3x3"
top: "inception_4c_3x3"
}
layer {
name: "inception_4c_5x5_reduce"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5_reduce"
}
layer {
name: "inception_4c_5x5"
type: "Convolution"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_5x5_bn"
type: "BatchNorm"
bottom: "inception_4c_5x5"
top: "inception_4c_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_5x5"
type: "ReLU"
bottom: "inception_4c_5x5"
top: "inception_4c_5x5"
}
layer {
name: "inception_4c_pool"
type: "Pooling"
bottom: "inception_4b_output"
top: "inception_4c_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4c_pool_proj"
type: "Convolution"
bottom: "inception_4c_pool"
top: "inception_4c_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4c_pool_proj"
top: "inception_4c_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_pool_proj"
type: "ReLU"
bottom: "inception_4c_pool_proj"
top: "inception_4c_pool_proj"
}
layer {
name: "inception_4c_output"
type: "Concat"
bottom: "inception_4c_1x1"
bottom: "inception_4c_3x3"
bottom: "inception_4c_5x5"
bottom: "inception_4c_pool_proj"
top: "inception_4c_output"
}
layer {
name: "inception_4d_1x1"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 112
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_1x1_bn"
type: "BatchNorm"
bottom: "inception_4d_1x1"
top: "inception_4d_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_1x1"
type: "ReLU"
bottom: "inception_4d_1x1"
top: "inception_4d_1x1"
}
layer {
name: "inception_4d_3x3_reduce"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 144
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3_reduce"
}
layer {
name: "inception_4d_3x3"
type: "Convolution"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 288
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_3x3_bn"
type: "BatchNorm"
bottom: "inception_4d_3x3"
top: "inception_4d_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_3x3"
type: "ReLU"
bottom: "inception_4d_3x3"
top: "inception_4d_3x3"
}
layer {
name: "inception_4d_5x5_reduce"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5_reduce"
}
layer {
name: "inception_4d_5x5"
type: "Convolution"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_5x5_bn"
type: "BatchNorm"
bottom: "inception_4d_5x5"
top: "inception_4d_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_5x5"
type: "ReLU"
bottom: "inception_4d_5x5"
top: "inception_4d_5x5"
}
layer {
name: "inception_4d_pool"
type: "Pooling"
bottom: "inception_4c_output"
top: "inception_4d_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4d_pool_proj"
type: "Convolution"
bottom: "inception_4d_pool"
top: "inception_4d_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4d_pool_proj"
top: "inception_4d_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_pool_proj"
type: "ReLU"
bottom: "inception_4d_pool_proj"
top: "inception_4d_pool_proj"
}
layer {
name: "inception_4d_output"
type: "Concat"
bottom: "inception_4d_1x1"
bottom: "inception_4d_3x3"
bottom: "inception_4d_5x5"
bottom: "inception_4d_pool_proj"
top: "inception_4d_output"
}
# layer {
# name: "loss2_ave_pool"
# type: "Pooling"
# bottom: "inception_4d_output"
# top: "loss2_ave_pool"
# pooling_param {
# pool: AVE
# kernel_size: 5
# stride: 3
# }
# }
# layer {
# name: "loss2_conv"
# type: "Convolution"
# bottom: "loss2_ave_pool"
# top: "loss2_conv"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# convolution_param {
# num_output: 128
# pad: 0
# kernel_size: 1
# stride: 1
# weight_filler {
# type: "xavier"
# std: 1
# }
# bias_filler {
# type: "constant"
# value: 0.2
# }
# }
# }
# layer {
# name: "loss2_conv_bn"
# type: "BatchNorm"
# bottom: "loss2_conv"
# top: "loss2_conv"
# batch_norm_param {
# use_global_stats: false
# }
# }
# layer {
# name: "loss2_relu_conv"
# type: "ReLU"
# bottom: "loss2_conv"
# top: "loss2_conv"
# }
# layer {
# name: "loss2_fc"
# type: "InnerProduct"
# bottom: "loss2_conv"
# top: "loss2_fc"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# inner_product_param {
# num_output: 1024
# weight_filler {
# type: "xavier"
# std: 1
# }
# bias_filler {
# type: "constant"
# value: 0.2
# }
# }
# }
# layer {
# name: "loss2_relu_fc"
# type: "ReLU"
# bottom: "loss2_fc"
# top: "loss2_fc"
# }
# layer {
# name: "loss2_drop_fc"
# type: "Dropout"
# bottom: "loss2_fc"
# top: "loss2_fc"
# dropout_param {
# dropout_ratio: 0.7
# }
# }
# layer {
# name: "loss2_classifier"
# type: "InnerProduct"
# bottom: "loss2_fc"
# top: "loss2_classifier"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# inner_product_param {
# num_output: 1000
# weight_filler {
# type: "xavier"
# }
# bias_filler {
# type: "constant"
# value: 0
# }
# }
# }
# layer {
# name: "loss2_loss"
# type: "SoftmaxWithLoss"
# bottom: "loss2_classifier"
# bottom: "label"
# top: "loss2_loss"
# loss_weight: 0.3
# }
# layer {
# name: "loss2_accuracy_top1"
# type: "Accuracy"
# bottom: "loss2_classifier"
# bottom: "label"
# top: "loss2_accuracy_top1"
# include {
# phase: TEST
# }
# }
# layer {
# name: "loss2_accuracy_top5"
# type: "Accuracy"
# bottom: "loss2_classifier"
# bottom: "label"
# top: "loss2_accuracy_top5"
# include {
# phase: TEST
# }
# accuracy_param {
# top_k: 5
# }
# }
layer {
name: "inception_4e_1x1"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_1x1_bn"
type: "BatchNorm"
bottom: "inception_4e_1x1"
top: "inception_4e_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_1x1"
type: "ReLU"
bottom: "inception_4e_1x1"
top: "inception_4e_1x1"
}
layer {
name: "inception_4e_3x3_reduce"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3_reduce"
}
layer {
name: "inception_4e_3x3"
type: "Convolution"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_3x3_bn"
type: "BatchNorm"
bottom: "inception_4e_3x3"
top: "inception_4e_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_3x3"
type: "ReLU"
bottom: "inception_4e_3x3"
top: "inception_4e_3x3"
}
layer {
name: "inception_4e_5x5_reduce"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5_reduce"
}
layer {
name: "inception_4e_5x5"
type: "Convolution"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_5x5_bn"
type: "BatchNorm"
bottom: "inception_4e_5x5"
top: "inception_4e_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_5x5"
type: "ReLU"
bottom: "inception_4e_5x5"
top: "inception_4e_5x5"
}
layer {
name: "inception_4e_pool"
type: "Pooling"
bottom: "inception_4d_output"
top: "inception_4e_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4e_pool_proj"
type: "Convolution"
bottom: "inception_4e_pool"
top: "inception_4e_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4e_pool_proj"
top: "inception_4e_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_pool_proj"
type: "ReLU"
bottom: "inception_4e_pool_proj"
top: "inception_4e_pool_proj"
}
layer {
name: "inception_4e_output"
type: "Concat"
bottom: "inception_4e_1x1"
bottom: "inception_4e_3x3"
bottom: "inception_4e_5x5"
bottom: "inception_4e_pool_proj"
top: "inception_4e_output"
}
layer {
name: "pool4_3x3_s2"
type: "Pooling"
bottom: "inception_4e_output"
top: "pool4_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_5a_1x1"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_1x1_bn"
type: "BatchNorm"
bottom: "inception_5a_1x1"
top: "inception_5a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_1x1"
type: "ReLU"
bottom: "inception_5a_1x1"
top: "inception_5a_1x1"
}
layer {
name: "inception_5a_3x3_reduce"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3_reduce"
}
layer {
name: "inception_5a_3x3"
type: "Convolution"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_3x3_bn"
type: "BatchNorm"
bottom: "inception_5a_3x3"
top: "inception_5a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_3x3"
type: "ReLU"
bottom: "inception_5a_3x3"
top: "inception_5a_3x3"
}
layer {
name: "inception_5a_5x5_reduce"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5_reduce"
}
layer {
name: "inception_5a_5x5"
type: "Convolution"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_5x5_bn"
type: "BatchNorm"
bottom: "inception_5a_5x5"
top: "inception_5a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_5x5"
type: "ReLU"
bottom: "inception_5a_5x5"
top: "inception_5a_5x5"
}
layer {
name: "inception_5a_pool"
type: "Pooling"
bottom: "pool4_3x3_s2"
top: "inception_5a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5a_pool_proj"
type: "Convolution"
bottom: "inception_5a_pool"
top: "inception_5a_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_5a_pool_proj"
top: "inception_5a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_pool_proj"
type: "ReLU"
bottom: "inception_5a_pool_proj"
top: "inception_5a_pool_proj"
}
layer {
name: "inception_5a_output"
type: "Concat"
bottom: "inception_5a_1x1"
bottom: "inception_5a_3x3"
bottom: "inception_5a_5x5"
bottom: "inception_5a_pool_proj"
top: "inception_5a_output"
}
layer {
name: "inception_5b_1x1"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_1x1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_1x1_bn"
type: "BatchNorm"
bottom: "inception_5b_1x1"
top: "inception_5b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_1x1"
type: "ReLU"
bottom: "inception_5b_1x1"
top: "inception_5b_1x1"
}
layer {
name: "inception_5b_3x3_reduce"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_3x3_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3_reduce"
}
layer {
name: "inception_5b_3x3"
type: "Convolution"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_3x3_bn"
type: "BatchNorm"
bottom: "inception_5b_3x3"
top: "inception_5b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_3x3"
type: "ReLU"
bottom: "inception_5b_3x3"
top: "inception_5b_3x3"
}
layer {
name: "inception_5b_5x5_reduce"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_5x5_reduce"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5_reduce"
}
layer {
name: "inception_5b_5x5"
type: "Convolution"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_5x5_bn"
type: "BatchNorm"
bottom: "inception_5b_5x5"
top: "inception_5b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_5x5"
type: "ReLU"
bottom: "inception_5b_5x5"
top: "inception_5b_5x5"
}
layer {
name: "inception_5b_pool"
type: "Pooling"
bottom: "inception_5a_output"
top: "inception_5b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5b_pool_proj"
type: "Convolution"
bottom: "inception_5b_pool"
top: "inception_5b_pool_proj"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_5b_pool_proj"
top: "inception_5b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_pool_proj"
type: "ReLU"
bottom: "inception_5b_pool_proj"
top: "inception_5b_pool_proj"
}
layer {
name: "inception_5b_output"
type: "Concat"
bottom: "inception_5b_1x1"
bottom: "inception_5b_3x3"
bottom: "inception_5b_5x5"
bottom: "inception_5b_pool_proj"
top: "inception_5b_output"
}
layer {
name: "pool5_7x7_s1_tune"
type: "Pooling"
bottom: "inception_5b_output"
top: "pool5_7x7_s1_tune"
pooling_param {
pool: AVE
kernel_size: 7
stride: 1
}
}
layer {
name: "pool5_drop_7x7_s1"
type: "Dropout"
bottom: "pool5_7x7_s1_tune"
top: "pool5_7x7_s1_tune"
dropout_param {
dropout_ratio: 0.4
}
}
#### triplet loss #####
layer{
name: "embedding"
type: "InnerProduct"
bottom: "pool5_7x7_s1_tune"
top: "embedding"
param {
lr_mult: 1
decay_mult: 0
}
inner_product_param {
num_output: 128
weight_filler {
type: "xavier"
}
bias_filler{
type: "constant"
value: 0
}
}
}
layer {
name: "norm2"
type: "Python"
bottom: "embedding"
top: "norm2"
python_param {
module: "l2norm_layer"
layer: "L2NormLayer"
}
}
layer {
name: "tripletsample"
type: "Python"
bottom: "norm2"
bottom: "label"
top: "anchor"
top: "positive"
top: "negative"
python_param {
module: "tripletsample_layer"
layer: "TripletSampleLayer"
}
}
layer {
name: "tripletloss"
type: "Python"
bottom: "anchor"
bottom: "positive"
bottom: "negative"
top: "loss"
python_param {
module: "tripletloss_layer"
layer: "TripletLayer"
param_str: "'margin': 0.2"
}
loss_weight: 1
}
#### softmax loss #####
# layer {
# name: "loss3_classifier_390"
# type: "InnerProduct"
# bottom: "pool5_7x7_s1"
# top: "loss3_classifier_390"
# param {
# lr_mult: 0
# decay_mult: 0
# }
# param {
# lr_mult: 0
# decay_mult: 0
# }
# inner_product_param {
# num_output: 390
# weight_filler {
# type: "xavier"
# }
# bias_filler {
# type: "constant"
# value: 0
# }
# }
# }
# layer {
# name: "loss3_loss"
# type: "SoftmaxWithLoss"
# bottom: "loss3_classifier_390"
# bottom: "label"
# top: "loss3_loss"
# loss_weight: 1
# }
# layer {
# name: "loss3_accuracy_top1"
# type: "Accuracy"
# bottom: "loss3_classifier_390"
# bottom: "label"
# top: "loss3_accuracy_top1"
# include {
# phase: TEST
# }
# }
# layer {
# name: "loss3_accuracy_top5"
# type: "Accuracy"
# bottom: "loss3_classifier_390"
# bottom: "label"
# top: "loss3_accuracy_top5"
# include {
# phase: TEST
# }
# accuracy_param {
# top_k: 5
# }
# }
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment