Skip to content

Instantly share code, notes, and snippets.

@wenfahu
Created November 21, 2016 03:20
Show Gist options
  • Save wenfahu/c37df90f85d2be3486b898917382ba7c to your computer and use it in GitHub Desktop.
Save wenfahu/c37df90f85d2be3486b898917382ba7c to your computer and use it in GitHub Desktop.
## inception face clasffication
name: "inception_bn"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "/home/data/uftp_star_detect/user_file_2016-11-01-10/img_train_lmdb"
batch_size: 60
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "/home/data/uftp_star_detect/user_file_2016-11-01-10/img_test_lmdb"
batch_size: 20
backend: LMDB
}
}
layer {
name: "conv1_7x7_s2"
type: "Convolution"
bottom: "data"
top: "conv1_7x7_s2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv1_7x7_s2_bn"
type: "BatchNorm"
bottom: "conv1_7x7_s2"
top: "conv1_7x7_s2"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv1_7x7_relu"
type: "ReLU"
bottom: "conv1_7x7_s2"
top: "conv1_7x7_s2"
}
layer {
name: "pool1_3x3_s2"
type: "Pooling"
bottom: "conv1_7x7_s2"
top: "pool1_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2_3x3_reduce"
type: "Convolution"
bottom: "pool1_3x3_s2"
top: "conv2_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2_3x3_reduce_bn"
type: "BatchNorm"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv2_3x3_reduce_relu"
type: "ReLU"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3_reduce"
}
layer {
name: "conv2_3x3"
type: "Convolution"
bottom: "conv2_3x3_reduce"
top: "conv2_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "conv2_3x3_bn"
type: "BatchNorm"
bottom: "conv2_3x3"
top: "conv2_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "conv2_3x3_relu"
type: "ReLU"
bottom: "conv2_3x3"
top: "conv2_3x3"
}
layer {
name: "pool2_3x3_s2"
type: "Pooling"
bottom: "conv2_3x3"
top: "pool2_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_3a_1x1"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_1x1_bn"
type: "BatchNorm"
bottom: "inception_3a_1x1"
top: "inception_3a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_1x1"
type: "ReLU"
bottom: "inception_3a_1x1"
top: "inception_3a_1x1"
}
layer {
name: "inception_3a_3x3_reduce"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3_reduce"
}
layer {
name: "inception_3a_3x3"
type: "Convolution"
bottom: "inception_3a_3x3_reduce"
top: "inception_3a_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_3x3_bn"
type: "BatchNorm"
bottom: "inception_3a_3x3"
top: "inception_3a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_3x3"
type: "ReLU"
bottom: "inception_3a_3x3"
top: "inception_3a_3x3"
}
layer {
name: "inception_3a_5x5_reduce"
type: "Convolution"
bottom: "pool2_3x3_s2"
top: "inception_3a_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5_reduce"
}
layer {
name: "inception_3a_5x5"
type: "Convolution"
bottom: "inception_3a_5x5_reduce"
top: "inception_3a_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_5x5_bn"
type: "BatchNorm"
bottom: "inception_3a_5x5"
top: "inception_3a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_5x5"
type: "ReLU"
bottom: "inception_3a_5x5"
top: "inception_3a_5x5"
}
layer {
name: "inception_3a_pool"
type: "Pooling"
bottom: "pool2_3x3_s2"
top: "inception_3a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3a_pool_proj"
type: "Convolution"
bottom: "inception_3a_pool"
top: "inception_3a_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_3a_pool_proj"
top: "inception_3a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3a_relu_pool_proj"
type: "ReLU"
bottom: "inception_3a_pool_proj"
top: "inception_3a_pool_proj"
}
layer {
name: "inception_3a_output"
type: "Concat"
bottom: "inception_3a_1x1"
bottom: "inception_3a_3x3"
bottom: "inception_3a_5x5"
bottom: "inception_3a_pool_proj"
top: "inception_3a_output"
}
layer {
name: "inception_3b_1x1"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_1x1_bn"
type: "BatchNorm"
bottom: "inception_3b_1x1"
top: "inception_3b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_1x1"
type: "ReLU"
bottom: "inception_3b_1x1"
top: "inception_3b_1x1"
}
layer {
name: "inception_3b_3x3_reduce"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3_reduce"
}
layer {
name: "inception_3b_3x3"
type: "Convolution"
bottom: "inception_3b_3x3_reduce"
top: "inception_3b_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_3x3_bn"
type: "BatchNorm"
bottom: "inception_3b_3x3"
top: "inception_3b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_3x3"
type: "ReLU"
bottom: "inception_3b_3x3"
top: "inception_3b_3x3"
}
layer {
name: "inception_3b_5x5_reduce"
type: "Convolution"
bottom: "inception_3a_output"
top: "inception_3b_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5_reduce"
}
layer {
name: "inception_3b_5x5"
type: "Convolution"
bottom: "inception_3b_5x5_reduce"
top: "inception_3b_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_5x5_bn"
type: "BatchNorm"
bottom: "inception_3b_5x5"
top: "inception_3b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_5x5"
type: "ReLU"
bottom: "inception_3b_5x5"
top: "inception_3b_5x5"
}
layer {
name: "inception_3b_pool"
type: "Pooling"
bottom: "inception_3a_output"
top: "inception_3b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_3b_pool_proj"
type: "Convolution"
bottom: "inception_3b_pool"
top: "inception_3b_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_3b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_3b_pool_proj"
top: "inception_3b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_3b_relu_pool_proj"
type: "ReLU"
bottom: "inception_3b_pool_proj"
top: "inception_3b_pool_proj"
}
layer {
name: "inception_3b_output"
type: "Concat"
bottom: "inception_3b_1x1"
bottom: "inception_3b_3x3"
bottom: "inception_3b_5x5"
bottom: "inception_3b_pool_proj"
top: "inception_3b_output"
}
layer {
name: "pool3_3x3_s2"
type: "Pooling"
bottom: "inception_3b_output"
top: "pool3_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_4a_1x1"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_1x1_bn"
type: "BatchNorm"
bottom: "inception_4a_1x1"
top: "inception_4a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_1x1"
type: "ReLU"
bottom: "inception_4a_1x1"
top: "inception_4a_1x1"
}
layer {
name: "inception_4a_3x3_reduce"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3_reduce"
}
layer {
name: "inception_4a_3x3"
type: "Convolution"
bottom: "inception_4a_3x3_reduce"
top: "inception_4a_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 208
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_3x3_bn"
type: "BatchNorm"
bottom: "inception_4a_3x3"
top: "inception_4a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_3x3"
type: "ReLU"
bottom: "inception_4a_3x3"
top: "inception_4a_3x3"
}
layer {
name: "inception_4a_5x5_reduce"
type: "Convolution"
bottom: "pool3_3x3_s2"
top: "inception_4a_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5_reduce"
}
layer {
name: "inception_4a_5x5"
type: "Convolution"
bottom: "inception_4a_5x5_reduce"
top: "inception_4a_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_5x5_bn"
type: "BatchNorm"
bottom: "inception_4a_5x5"
top: "inception_4a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_5x5"
type: "ReLU"
bottom: "inception_4a_5x5"
top: "inception_4a_5x5"
}
layer {
name: "inception_4a_pool"
type: "Pooling"
bottom: "pool3_3x3_s2"
top: "inception_4a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4a_pool_proj"
type: "Convolution"
bottom: "inception_4a_pool"
top: "inception_4a_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4a_pool_proj"
top: "inception_4a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4a_relu_pool_proj"
type: "ReLU"
bottom: "inception_4a_pool_proj"
top: "inception_4a_pool_proj"
}
layer {
name: "inception_4a_output"
type: "Concat"
bottom: "inception_4a_1x1"
bottom: "inception_4a_3x3"
bottom: "inception_4a_5x5"
bottom: "inception_4a_pool_proj"
top: "inception_4a_output"
}
layer {
name: "loss1_ave_pool"
type: "Pooling"
bottom: "inception_4a_output"
top: "loss1_ave_pool"
pooling_param {
pool: AVE
kernel_size: 5
stride: 3
}
}
layer {
name: "loss1_conv"
type: "Convolution"
bottom: "loss1_ave_pool"
top: "loss1_conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss1_conv_bn"
type: "BatchNorm"
bottom: "loss1_conv"
top: "loss1_conv"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "loss1_relu_conv"
type: "ReLU"
bottom: "loss1_conv"
top: "loss1_conv"
}
layer {
name: "loss1_fc"
type: "InnerProduct"
bottom: "loss1_conv"
top: "loss1_fc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss1_relu_fc"
type: "ReLU"
bottom: "loss1_fc"
top: "loss1_fc"
}
layer {
name: "loss1_drop_fc"
type: "Dropout"
bottom: "loss1_fc"
top: "loss1_fc"
dropout_param {
dropout_ratio: 0.7
}
}
layer {
name: "loss1_classifier"
type: "InnerProduct"
bottom: "loss1_fc"
top: "loss1_classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss1_loss"
type: "SoftmaxWithLoss"
bottom: "loss1_classifier"
bottom: "label"
top: "loss1_loss"
loss_weight: 0.3
}
layer {
name: "loss1_accuracy_top1"
type: "Accuracy"
bottom: "loss1_classifier"
bottom: "label"
top: "loss1_accuracy_top1"
include {
phase: TEST
}
}
layer {
name: "loss1_accuracy_top5"
type: "Accuracy"
bottom: "loss1_classifier"
bottom: "label"
top: "loss1_accuracy_top5"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
layer {
name: "inception_4b_1x1"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_1x1_bn"
type: "BatchNorm"
bottom: "inception_4b_1x1"
top: "inception_4b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_1x1"
type: "ReLU"
bottom: "inception_4b_1x1"
top: "inception_4b_1x1"
}
layer {
name: "inception_4b_3x3_reduce"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3_reduce"
}
layer {
name: "inception_4b_3x3"
type: "Convolution"
bottom: "inception_4b_3x3_reduce"
top: "inception_4b_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 224
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_3x3_bn"
type: "BatchNorm"
bottom: "inception_4b_3x3"
top: "inception_4b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_3x3"
type: "ReLU"
bottom: "inception_4b_3x3"
top: "inception_4b_3x3"
}
layer {
name: "inception_4b_5x5_reduce"
type: "Convolution"
bottom: "inception_4a_output"
top: "inception_4b_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5_reduce"
}
layer {
name: "inception_4b_5x5"
type: "Convolution"
bottom: "inception_4b_5x5_reduce"
top: "inception_4b_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_5x5_bn"
type: "BatchNorm"
bottom: "inception_4b_5x5"
top: "inception_4b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_5x5"
type: "ReLU"
bottom: "inception_4b_5x5"
top: "inception_4b_5x5"
}
layer {
name: "inception_4b_pool"
type: "Pooling"
bottom: "inception_4a_output"
top: "inception_4b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4b_pool_proj"
type: "Convolution"
bottom: "inception_4b_pool"
top: "inception_4b_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4b_pool_proj"
top: "inception_4b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4b_relu_pool_proj"
type: "ReLU"
bottom: "inception_4b_pool_proj"
top: "inception_4b_pool_proj"
}
layer {
name: "inception_4b_output"
type: "Concat"
bottom: "inception_4b_1x1"
bottom: "inception_4b_3x3"
bottom: "inception_4b_5x5"
bottom: "inception_4b_pool_proj"
top: "inception_4b_output"
}
layer {
name: "inception_4c_1x1"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_1x1_bn"
type: "BatchNorm"
bottom: "inception_4c_1x1"
top: "inception_4c_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_1x1"
type: "ReLU"
bottom: "inception_4c_1x1"
top: "inception_4c_1x1"
}
layer {
name: "inception_4c_3x3_reduce"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3_reduce"
}
layer {
name: "inception_4c_3x3"
type: "Convolution"
bottom: "inception_4c_3x3_reduce"
top: "inception_4c_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_3x3_bn"
type: "BatchNorm"
bottom: "inception_4c_3x3"
top: "inception_4c_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_3x3"
type: "ReLU"
bottom: "inception_4c_3x3"
top: "inception_4c_3x3"
}
layer {
name: "inception_4c_5x5_reduce"
type: "Convolution"
bottom: "inception_4b_output"
top: "inception_4c_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5_reduce"
}
layer {
name: "inception_4c_5x5"
type: "Convolution"
bottom: "inception_4c_5x5_reduce"
top: "inception_4c_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_5x5_bn"
type: "BatchNorm"
bottom: "inception_4c_5x5"
top: "inception_4c_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_5x5"
type: "ReLU"
bottom: "inception_4c_5x5"
top: "inception_4c_5x5"
}
layer {
name: "inception_4c_pool"
type: "Pooling"
bottom: "inception_4b_output"
top: "inception_4c_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4c_pool_proj"
type: "Convolution"
bottom: "inception_4c_pool"
top: "inception_4c_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4c_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4c_pool_proj"
top: "inception_4c_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4c_relu_pool_proj"
type: "ReLU"
bottom: "inception_4c_pool_proj"
top: "inception_4c_pool_proj"
}
layer {
name: "inception_4c_output"
type: "Concat"
bottom: "inception_4c_1x1"
bottom: "inception_4c_3x3"
bottom: "inception_4c_5x5"
bottom: "inception_4c_pool_proj"
top: "inception_4c_output"
}
layer {
name: "inception_4d_1x1"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 112
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_1x1_bn"
type: "BatchNorm"
bottom: "inception_4d_1x1"
top: "inception_4d_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_1x1"
type: "ReLU"
bottom: "inception_4d_1x1"
top: "inception_4d_1x1"
}
layer {
name: "inception_4d_3x3_reduce"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 144
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3_reduce"
}
layer {
name: "inception_4d_3x3"
type: "Convolution"
bottom: "inception_4d_3x3_reduce"
top: "inception_4d_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 288
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_3x3_bn"
type: "BatchNorm"
bottom: "inception_4d_3x3"
top: "inception_4d_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_3x3"
type: "ReLU"
bottom: "inception_4d_3x3"
top: "inception_4d_3x3"
}
layer {
name: "inception_4d_5x5_reduce"
type: "Convolution"
bottom: "inception_4c_output"
top: "inception_4d_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5_reduce"
}
layer {
name: "inception_4d_5x5"
type: "Convolution"
bottom: "inception_4d_5x5_reduce"
top: "inception_4d_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_5x5_bn"
type: "BatchNorm"
bottom: "inception_4d_5x5"
top: "inception_4d_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_5x5"
type: "ReLU"
bottom: "inception_4d_5x5"
top: "inception_4d_5x5"
}
layer {
name: "inception_4d_pool"
type: "Pooling"
bottom: "inception_4c_output"
top: "inception_4d_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4d_pool_proj"
type: "Convolution"
bottom: "inception_4d_pool"
top: "inception_4d_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4d_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4d_pool_proj"
top: "inception_4d_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4d_relu_pool_proj"
type: "ReLU"
bottom: "inception_4d_pool_proj"
top: "inception_4d_pool_proj"
}
layer {
name: "inception_4d_output"
type: "Concat"
bottom: "inception_4d_1x1"
bottom: "inception_4d_3x3"
bottom: "inception_4d_5x5"
bottom: "inception_4d_pool_proj"
top: "inception_4d_output"
}
layer {
name: "loss2_ave_pool"
type: "Pooling"
bottom: "inception_4d_output"
top: "loss2_ave_pool"
pooling_param {
pool: AVE
kernel_size: 5
stride: 3
}
}
layer {
name: "loss2_conv"
type: "Convolution"
bottom: "loss2_ave_pool"
top: "loss2_conv"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss2_conv_bn"
type: "BatchNorm"
bottom: "loss2_conv"
top: "loss2_conv"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "loss2_relu_conv"
type: "ReLU"
bottom: "loss2_conv"
top: "loss2_conv"
}
layer {
name: "loss2_fc"
type: "InnerProduct"
bottom: "loss2_conv"
top: "loss2_fc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "loss2_relu_fc"
type: "ReLU"
bottom: "loss2_fc"
top: "loss2_fc"
}
layer {
name: "loss2_drop_fc"
type: "Dropout"
bottom: "loss2_fc"
top: "loss2_fc"
dropout_param {
dropout_ratio: 0.7
}
}
layer {
name: "loss2_classifier"
type: "InnerProduct"
bottom: "loss2_fc"
top: "loss2_classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss2_loss"
type: "SoftmaxWithLoss"
bottom: "loss2_classifier"
bottom: "label"
top: "loss2_loss"
loss_weight: 0.3
}
layer {
name: "loss2_accuracy_top1"
type: "Accuracy"
bottom: "loss2_classifier"
bottom: "label"
top: "loss2_accuracy_top1"
include {
phase: TEST
}
}
layer {
name: "loss2_accuracy_top5"
type: "Accuracy"
bottom: "loss2_classifier"
bottom: "label"
top: "loss2_accuracy_top5"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
layer {
name: "inception_4e_1x1"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_1x1_bn"
type: "BatchNorm"
bottom: "inception_4e_1x1"
top: "inception_4e_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_1x1"
type: "ReLU"
bottom: "inception_4e_1x1"
top: "inception_4e_1x1"
}
layer {
name: "inception_4e_3x3_reduce"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3_reduce"
}
layer {
name: "inception_4e_3x3"
type: "Convolution"
bottom: "inception_4e_3x3_reduce"
top: "inception_4e_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_3x3_bn"
type: "BatchNorm"
bottom: "inception_4e_3x3"
top: "inception_4e_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_3x3"
type: "ReLU"
bottom: "inception_4e_3x3"
top: "inception_4e_3x3"
}
layer {
name: "inception_4e_5x5_reduce"
type: "Convolution"
bottom: "inception_4d_output"
top: "inception_4e_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5_reduce"
}
layer {
name: "inception_4e_5x5"
type: "Convolution"
bottom: "inception_4e_5x5_reduce"
top: "inception_4e_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_5x5_bn"
type: "BatchNorm"
bottom: "inception_4e_5x5"
top: "inception_4e_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_5x5"
type: "ReLU"
bottom: "inception_4e_5x5"
top: "inception_4e_5x5"
}
layer {
name: "inception_4e_pool"
type: "Pooling"
bottom: "inception_4d_output"
top: "inception_4e_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_4e_pool_proj"
type: "Convolution"
bottom: "inception_4e_pool"
top: "inception_4e_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_4e_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_4e_pool_proj"
top: "inception_4e_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_4e_relu_pool_proj"
type: "ReLU"
bottom: "inception_4e_pool_proj"
top: "inception_4e_pool_proj"
}
layer {
name: "inception_4e_output"
type: "Concat"
bottom: "inception_4e_1x1"
bottom: "inception_4e_3x3"
bottom: "inception_4e_5x5"
bottom: "inception_4e_pool_proj"
top: "inception_4e_output"
}
layer {
name: "pool4_3x3_s2"
type: "Pooling"
bottom: "inception_4e_output"
top: "pool4_3x3_s2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "inception_5a_1x1"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_1x1_bn"
type: "BatchNorm"
bottom: "inception_5a_1x1"
top: "inception_5a_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_1x1"
type: "ReLU"
bottom: "inception_5a_1x1"
top: "inception_5a_1x1"
}
layer {
name: "inception_5a_3x3_reduce"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 160
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3_reduce"
}
layer {
name: "inception_5a_3x3"
type: "Convolution"
bottom: "inception_5a_3x3_reduce"
top: "inception_5a_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 320
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_3x3_bn"
type: "BatchNorm"
bottom: "inception_5a_3x3"
top: "inception_5a_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_3x3"
type: "ReLU"
bottom: "inception_5a_3x3"
top: "inception_5a_3x3"
}
layer {
name: "inception_5a_5x5_reduce"
type: "Convolution"
bottom: "pool4_3x3_s2"
top: "inception_5a_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5_reduce"
}
layer {
name: "inception_5a_5x5"
type: "Convolution"
bottom: "inception_5a_5x5_reduce"
top: "inception_5a_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_5x5_bn"
type: "BatchNorm"
bottom: "inception_5a_5x5"
top: "inception_5a_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_5x5"
type: "ReLU"
bottom: "inception_5a_5x5"
top: "inception_5a_5x5"
}
layer {
name: "inception_5a_pool"
type: "Pooling"
bottom: "pool4_3x3_s2"
top: "inception_5a_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5a_pool_proj"
type: "Convolution"
bottom: "inception_5a_pool"
top: "inception_5a_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5a_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_5a_pool_proj"
top: "inception_5a_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5a_relu_pool_proj"
type: "ReLU"
bottom: "inception_5a_pool_proj"
top: "inception_5a_pool_proj"
}
layer {
name: "inception_5a_output"
type: "Concat"
bottom: "inception_5a_1x1"
bottom: "inception_5a_3x3"
bottom: "inception_5a_5x5"
bottom: "inception_5a_pool_proj"
top: "inception_5a_output"
}
layer {
name: "inception_5b_1x1"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_1x1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_1x1_bn"
type: "BatchNorm"
bottom: "inception_5b_1x1"
top: "inception_5b_1x1"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_1x1"
type: "ReLU"
bottom: "inception_5b_1x1"
top: "inception_5b_1x1"
}
layer {
name: "inception_5b_3x3_reduce"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_3x3_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 192
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_3x3_reduce_bn"
type: "BatchNorm"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_3x3_reduce"
type: "ReLU"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3_reduce"
}
layer {
name: "inception_5b_3x3"
type: "Convolution"
bottom: "inception_5b_3x3_reduce"
top: "inception_5b_3x3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_3x3_bn"
type: "BatchNorm"
bottom: "inception_5b_3x3"
top: "inception_5b_3x3"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_3x3"
type: "ReLU"
bottom: "inception_5b_3x3"
top: "inception_5b_3x3"
}
layer {
name: "inception_5b_5x5_reduce"
type: "Convolution"
bottom: "inception_5a_output"
top: "inception_5b_5x5_reduce"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_5x5_reduce_bn"
type: "BatchNorm"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5_reduce"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_5x5_reduce"
type: "ReLU"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5_reduce"
}
layer {
name: "inception_5b_5x5"
type: "Convolution"
bottom: "inception_5b_5x5_reduce"
top: "inception_5b_5x5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_5x5_bn"
type: "BatchNorm"
bottom: "inception_5b_5x5"
top: "inception_5b_5x5"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_5x5"
type: "ReLU"
bottom: "inception_5b_5x5"
top: "inception_5b_5x5"
}
layer {
name: "inception_5b_pool"
type: "Pooling"
bottom: "inception_5a_output"
top: "inception_5b_pool"
pooling_param {
pool: MAX
kernel_size: 3
stride: 1
pad: 1
}
}
layer {
name: "inception_5b_pool_proj"
type: "Convolution"
bottom: "inception_5b_pool"
top: "inception_5b_pool_proj"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "inception_5b_pool_proj_bn"
type: "BatchNorm"
bottom: "inception_5b_pool_proj"
top: "inception_5b_pool_proj"
batch_norm_param {
use_global_stats: false
}
}
layer {
name: "inception_5b_relu_pool_proj"
type: "ReLU"
bottom: "inception_5b_pool_proj"
top: "inception_5b_pool_proj"
}
layer {
name: "inception_5b_output"
type: "Concat"
bottom: "inception_5b_1x1"
bottom: "inception_5b_3x3"
bottom: "inception_5b_5x5"
bottom: "inception_5b_pool_proj"
top: "inception_5b_output"
}
layer {
name: "pool5_7x7_s1"
type: "Pooling"
bottom: "inception_5b_output"
top: "pool5_7x7_s1"
pooling_param {
pool: AVE
kernel_size: 7
stride: 1
}
}
layer {
name: "pool5_drop_7x7_s1"
type: "Dropout"
bottom: "pool5_7x7_s1"
top: "pool5_7x7_s1"
dropout_param {
dropout_ratio: 0.4
}
}
layer {
name: "loss3_classifier_390"
type: "InnerProduct"
bottom: "pool5_7x7_s1"
top: "loss3_classifier_390"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 390
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss3_loss"
type: "SoftmaxWithLoss"
bottom: "loss3_classifier_390"
bottom: "label"
top: "loss3_loss"
loss_weight: 1
}
layer {
name: "loss3_accuracy_top1"
type: "Accuracy"
bottom: "loss3_classifier_390"
bottom: "label"
top: "loss3_accuracy_top1"
include {
phase: TEST
}
}
layer {
name: "loss3_accuracy_top5"
type: "Accuracy"
bottom: "loss3_classifier_390"
bottom: "label"
top: "loss3_accuracy_top5"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment