Skip to content

Instantly share code, notes, and snippets.

View wenfahu's full-sized avatar
🎯
Focusing

Bran Stewart wenfahu

🎯
Focusing
  • Intel
  • Beijing
View GitHub Profile
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@wenfahu
wenfahu / inception_bn_triplet_train_val.prototxt
Last active December 21, 2016 08:38
inception triplet face
name: "inception_bn"
layer{
name: 'data'
type: 'Python'
top: 'data'
top: 'label'
python_param {
module: 'data_layer'
layer: 'DataLayer'
}
This file has been truncated, but you can view the full file.
[{"query": "videomtv2016", "res": [{"contributors": null, "truncated": false, "text": "RT @Projeto5HVotes: Dinah \n#Now2016 #NOWFifthHarmony #VideoMTV2016 Fifth Harmony", "is_quote_status": false, "in_reply_to_status_id": null, "id": 813347580759470080, "favorite_count": 0, "entities": {"symbols": [], "user_mentions": [{"id": 4249453102, "indices": [3, 18], "id_str": "4249453102", "screen_name": "Projeto5HVotes", "name": "Projeto 5H Votes"}], "hashtags": [{"indices": [27, 35], "text": "Now2016"}, {"indices": [36, 52], "text": "NOWFifthHarmony"}, {"indices": [53, 66], "text": "VideoMTV2016"}], "urls": []}, "retweeted": false, "coordinates": null, "source": "<a href=\"http://twitter.com/download/android\" rel=\"nofollow\">Twitter for Android</a>", "in_reply_to_screen_name": null, "in_reply_to_user_id": null, "retweet_count": 54, "id_str": "813347580759470080", "favorited": false, "retweeted_status": {"contributors": null, "truncated": false, "text": "Dinah \n#Now2016 #NOWFifthHarmony #VideoMTV2016 Fifth Harmony
This file has been truncated, but you can view the full file.
[{"query": "now2016 nowladygaga", "res": [{"contributors": null, "truncated": false, "text": "RT @suporteladygaga: MONSTERS VOTANDO\n#NOW2016 #NOWLadyGaga https://t.co/SpCM7zFBpB", "is_quote_status": false, "in_reply_to_status_id": null, "id": 814453454659796992, "favorite_count": 0, "entities": {"symbols": [], "user_mentions": [{"id": 882160322, "indices": [3, 19], "id_str": "882160322", "screen_name": "suporteladygaga", "name": "Suporte Lady Gaga"}], "hashtags": [{"indices": [38, 46], "text": "NOW2016"}, {"indices": [47, 59], "text": "NOWLadyGaga"}], "urls": [], "media": [{"source_user_id": 882160322, "source_status_id_str": "814296174777798656", "expanded_url": "https://twitter.com/suporteladygaga/status/814296174777798656/photo/1", "display_url": "pic.twitter.com/SpCM7zFBpB", "url": "https://t.co/SpCM7zFBpB", "media_url_https": "https://pbs.twimg.com/media/C0z2CMqXAAA0Vom.jpg", "source_user_id_str": "882160322", "source_status_id": 814296174777798656, "id_str": "814296150266281984", "sizes": {"large": {"h
This file has been truncated, but you can view the full file.
[{"query": "china economy", "res": [{"contributors": null, "truncated": false, "text": "RT @KatiePilbeamIG: China's economy in 2017. https://t.co/v78JbOzr6x", "is_quote_status": true, "in_reply_to_status_id": null, "id": 814461641647685632, "favorite_count": 0, "entities": {"symbols": [], "user_mentions": [{"id": 702832773988544512, "indices": [3, 18], "id_str": "702832773988544512", "screen_name": "KatiePilbeamIG", "name": "Katie"}], "hashtags": [], "urls": [{"url": "https://t.co/v78JbOzr6x", "indices": [45, 68], "expanded_url": "https://twitter.com/IGTV/status/814424627523022849", "display_url": "twitter.com/IGTV/status/81\u2026"}]}, "quoted_status_id": 814424627523022849, "retweeted": false, "coordinates": null, "source": "<a href=\"http://twitter.com/download/android\" rel=\"nofollow\">Twitter for Android</a>", "in_reply_to_screen_name": null, "in_reply_to_user_id": null, "retweet_count": 1, "id_str": "814461641647685632", "favorited": false, "retweeted_status": {"contributors": null, "truncated": false,
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import pickle
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import node_def_pb2
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import pickle
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import node_def_pb2
@wenfahu
wenfahu / readme.rst
Last active September 4, 2017 02:09

Overall process

This toolset provides channel level pruning of inception-renet v2 model( the details of inception resnet v2 model, please refer to .. _Inception-ResnetV2: https://arxiv.org/abs/1602.07261

  1. python inf.py [meta] [ckpt] [output_mask] --threshold [threshold] : get the indices (mask) for the convolutional channel weights under the threshold.
  2. python freeze_graph.py [model_dir] [output_file]: freeze the model weights
  3. simplify the tensorflow graph using .. GTT: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#optimizing-for-deployment
  4. python conv_travser.py [graph_path] [mask_path] [output_graph] [output_mask]: prune the model based on the dependency of inception resnet v2, the output_graph is the pruned model and the output_mask is used for further training.
from collections import defaultdict
import numpy as np
import pdb
from IPython import embed
sky = defaultdict(list)
def find_tuple(pts, tgts):
idx = []