Last active
August 29, 2015 13:57
-
-
Save werediver/9785544 to your computer and use it in GitHub Desktop.
Basic SSA (Singular Spectrum Analysis) implementation for Scilab.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [y_out, m, sig] = ssa_normalize(y) | |
// http://en.wikipedia.org/wiki/Student%27s_t-statistic | |
m = mean(y) | |
sig = sqrt(variance(y)) // stdev(y) | |
y_out = (y - m) / sig | |
endfunction | |
function [y_out] = ssa(y, L, I) | |
[LAMBDA, U, V] = ssa_decompose(y, L) | |
y_out = ssa_reconstruct(LAMBDA, U, V, I) | |
endfunction | |
function [LAMBDA, U, V, X] = ssa_decompose(y, L) | |
// Ensure y is a column vector | |
y = matrix(y, -1, 1) | |
// Stage 1: Decomposition | |
// Step 1: Embedding | |
N = length(y) | |
if L > N / 2 then | |
L = N - L | |
end | |
K = N - L + 1 | |
// Time-delayed embedding of y, the trajectory matrix | |
X = zeros(L, K) | |
for i = 1 : K | |
X(:, i) = y(i : i + L - 1) | |
end | |
// Step 2: Singular value decomposition | |
// Direct approach | |
//[U, LAMBDA] = svd(X) | |
//LAMBDA = diag(LAMBDA) | |
// Covariance matrix | |
C = X * X' / K | |
// For stationary series | |
//C = toeplitz(corr(X, L)) | |
[U, LAMBDA] = svd(C) | |
// The eigenvalues of C are the squared eigenvalues of X | |
LAMBDA = sqrt(diag(LAMBDA)) | |
// Principal components | |
V = X' * U | |
for i = 1 : L | |
V(:, i) = V(:, i) / LAMBDA(i) | |
end | |
endfunction | |
function [y] = ssa_reconstruct(LAMBDA, U, V, I) | |
// Ensure I is a row vector | |
I = matrix(I, 1, -1) | |
[K, L] = size(V) | |
N = K + L - 1 | |
// Stage 2: Reconstruction | |
// Step 3: Grouping | |
for i = I | |
LAMBDA_U(:, i) = LAMBDA(i) * U(:, i) | |
end | |
// Reconstructed components | |
//X = LAMBDA_U(:, I) * V_transposed(I, :) | |
X = LAMBDA_U(:, I) * V(:, I)' | |
// Step 4: Diagonal averaging | |
y = zeros(N, 1) | |
for i = 1 : K + L - 1 | |
v = adiag(X, i) | |
y(i) = sum(v) / length(v) | |
end | |
y = real(y) | |
endfunction | |
function [v] = adiag(x, z) | |
// 2D matrix antidiagonal | |
[N, M] = size(x) | |
// The total diagonals count | |
Z = N + M - 1 | |
// The current diagonal length | |
z_len = min(z, Z - z + 1, min(N, M)) | |
i = max(z, N * (z - N + 1)) | |
step = N - 1 | |
v = x(i : step : i + step * z_len - 1) | |
endfunction |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment