Skip to content

Instantly share code, notes, and snippets.

@werediver
Last active August 29, 2015 13:57
Show Gist options
  • Save werediver/9785544 to your computer and use it in GitHub Desktop.
Save werediver/9785544 to your computer and use it in GitHub Desktop.
Basic SSA (Singular Spectrum Analysis) implementation for Scilab.
function [y_out, m, sig] = ssa_normalize(y)
// http://en.wikipedia.org/wiki/Student%27s_t-statistic
m = mean(y)
sig = sqrt(variance(y)) // stdev(y)
y_out = (y - m) / sig
endfunction
function [y_out] = ssa(y, L, I)
[LAMBDA, U, V] = ssa_decompose(y, L)
y_out = ssa_reconstruct(LAMBDA, U, V, I)
endfunction
function [LAMBDA, U, V, X] = ssa_decompose(y, L)
// Ensure y is a column vector
y = matrix(y, -1, 1)
// Stage 1: Decomposition
// Step 1: Embedding
N = length(y)
if L > N / 2 then
L = N - L
end
K = N - L + 1
// Time-delayed embedding of y, the trajectory matrix
X = zeros(L, K)
for i = 1 : K
X(:, i) = y(i : i + L - 1)
end
// Step 2: Singular value decomposition
// Direct approach
//[U, LAMBDA] = svd(X)
//LAMBDA = diag(LAMBDA)
// Covariance matrix
C = X * X' / K
// For stationary series
//C = toeplitz(corr(X, L))
[U, LAMBDA] = svd(C)
// The eigenvalues of C are the squared eigenvalues of X
LAMBDA = sqrt(diag(LAMBDA))
// Principal components
V = X' * U
for i = 1 : L
V(:, i) = V(:, i) / LAMBDA(i)
end
endfunction
function [y] = ssa_reconstruct(LAMBDA, U, V, I)
// Ensure I is a row vector
I = matrix(I, 1, -1)
[K, L] = size(V)
N = K + L - 1
// Stage 2: Reconstruction
// Step 3: Grouping
for i = I
LAMBDA_U(:, i) = LAMBDA(i) * U(:, i)
end
// Reconstructed components
//X = LAMBDA_U(:, I) * V_transposed(I, :)
X = LAMBDA_U(:, I) * V(:, I)'
// Step 4: Diagonal averaging
y = zeros(N, 1)
for i = 1 : K + L - 1
v = adiag(X, i)
y(i) = sum(v) / length(v)
end
y = real(y)
endfunction
function [v] = adiag(x, z)
// 2D matrix antidiagonal
[N, M] = size(x)
// The total diagonals count
Z = N + M - 1
// The current diagonal length
z_len = min(z, Z - z + 1, min(N, M))
i = max(z, N * (z - N + 1))
step = N - 1
v = x(i : step : i + step * z_len - 1)
endfunction
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment