Created
November 28, 2012 06:03
-
-
Save wesm/4159315 to your computer and use it in GitHub Desktop.
pandas e28903c vbench vs 0.9.0
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*** Processing results... | |
*** | |
Results: | |
t_head t_baseline ratio | |
name | |
read_csv_comment2 28.6790 366.0152 0.0784 | |
frame_iteritems_cached 0.0677 0.3855 0.1757 | |
read_csv_thou_vb 35.5317 188.2858 0.1887 | |
append_frame_single_homogenous 0.3423 0.8898 0.3847 | |
merge_2intkey_sort 18.5097 47.6546 0.3884 | |
read_csv_vb 18.7248 45.7636 0.4092 | |
read_csv_standard 12.6397 27.9108 0.4529 | |
frame_constructor_ndarray 0.0432 0.0929 0.4652 | |
panel_from_dict_all_different_indexes 75.3200 153.1069 0.4919 | |
panel_from_dict_two_different_indexes 52.0644 88.0649 0.5912 | |
frame_get_numeric_data 0.0653 0.1092 0.5982 | |
groupby_last 3.7499 6.2522 0.5998 | |
groupby_first 3.8356 6.2540 0.6133 | |
append_frame_single_mixed 1.3300 2.0846 0.6380 | |
frame_iteritems 2.4139 3.6719 0.6574 | |
series_align_int64_index 29.0940 39.1760 0.7426 | |
groupby_multi_size 31.1676 40.0273 0.7787 | |
groupby_simple_compress_timing 40.3675 50.6693 0.7967 | |
groupby_frame_singlekey_integer 2.3917 2.9027 0.8240 | |
sparse_series_to_frame 163.3000 187.9480 0.8689 | |
frame_fancy_lookup_all 26.1471 29.9780 0.8722 | |
write_csv_standard 364.8498 413.2900 0.8828 | |
groupby_multi_cython 17.2122 19.2799 0.8928 | |
frame_reindex_both_axes 0.3685 0.4069 0.9058 | |
groupby_frame_median 7.1886 7.9312 0.9064 | |
groupby_multi_series_op 15.7138 17.3286 0.9068 | |
stat_ops_level_frame_sum 3.1070 3.4261 0.9069 | |
stat_ops_level_series_sum_multiple 7.1552 7.8749 0.9086 | |
merge_2intkey_nosort 18.6504 20.4990 0.9098 | |
reshape_stack_simple 2.6133 2.8632 0.9127 | |
sort_level_one 4.3217 4.7277 0.9141 | |
frame_fancy_lookup 2.2856 2.4957 0.9158 | |
dataframe_reindex_columns 0.3034 0.3310 0.9164 | |
join_dataframe_index_single_key_small 5.8404 6.3534 0.9193 | |
groupby_multi_python 52.9893 57.6418 0.9193 | |
frame_ctor_nested_dict_int64 125.6599 136.6770 0.9194 | |
frame_reindex_both_axes_ix 0.4501 0.4886 0.9212 | |
indexing_dataframe_boolean_rows 0.2313 0.2482 0.9319 | |
groupby_indices 6.8819 7.3587 0.9352 | |
reindex_frame_level_align 0.9526 1.0171 0.9366 | |
stat_ops_level_series_sum 2.3302 2.4850 0.9377 | |
frame_reindex_axis1 2.8352 3.0136 0.9408 | |
join_dataframe_index_multi 20.8752 22.1074 0.9443 | |
groupby_multi_different_functions 13.8645 14.6820 0.9443 | |
frame_boolean_row_select 0.2966 0.3133 0.9468 | |
indexing_dataframe_boolean_rows_object 0.4765 0.4994 0.9542 | |
stat_ops_level_frame_sum_multiple 8.2375 8.6054 0.9572 | |
timeseries_asof_nan 9.9166 10.3530 0.9578 | |
concat_series_axis1 68.8407 71.6028 0.9614 | |
join_dataframe_index_single_key_bigger 14.8686 15.4620 0.9616 | |
stat_ops_series_std 0.2485 0.2575 0.9651 | |
reindex_multiindex 1.2675 1.3120 0.9660 | |
groupby_pivot_table 18.9950 19.5181 0.9732 | |
groupby_series_simple_cython 5.2458 5.3860 0.9740 | |
timeseries_infer_freq 10.2526 10.5141 0.9751 | |
groupby_multi_different_numpy_functions 14.2536 14.6002 0.9763 | |
frame_ctor_list_of_dict 95.6521 97.9548 0.9765 | |
groupby_frame_cython_many_columns 3.6637 3.7506 0.9768 | |
groupby_apply_dict_return 39.1278 39.9674 0.9790 | |
frame_ctor_nested_dict 91.8862 93.7090 0.9805 | |
frame_reindex_axis0 1.3451 1.3695 0.9822 | |
reindex_frame_level_reindex 0.9309 0.9468 0.9832 | |
timeseries_period_downsample_mean 6.1616 6.2590 0.9844 | |
timeseries_add_irregular 21.5964 21.9330 0.9847 | |
timeseries_large_lookup_value 0.0240 0.0243 0.9872 | |
match_strings 0.3738 0.3779 0.9890 | |
timeseries_timestamp_tzinfo_cons 0.0162 0.0164 0.9905 | |
frame_to_csv 409.9939 413.8510 0.9907 | |
timeseries_sort_index 21.9657 22.1374 0.9922 | |
panel_from_dict_equiv_indexes 27.0837 27.2880 0.9925 | |
frame_fillna_inplace 16.0971 16.2147 0.9927 | |
frame_fillna_many_columns_pad 15.4141 15.5204 0.9932 | |
index_int64_union 82.2940 82.8500 0.9933 | |
timeseries_slice_minutely 0.0605 0.0609 0.9937 | |
panel_from_dict_same_index 27.2095 27.3502 0.9949 | |
reindex_daterange_pad 0.1834 0.1842 0.9958 | |
datetimeindex_add_offset 0.2538 0.2548 0.9962 | |
series_value_counts_int64 2.5946 2.6043 0.9963 | |
index_int64_intersection 25.5529 25.6429 0.9965 | |
stats_rank2d_axis1_average 14.3055 14.2955 1.0007 | |
series_align_left_monotonic 13.0389 13.0229 1.0012 | |
series_ctor_from_dict 3.7559 3.7363 1.0053 | |
stats_rank_average_int 22.5847 22.4257 1.0071 | |
reindex_daterange_backfill 0.1832 0.1814 1.0101 | |
timeseries_timestamp_downsample_mean 4.4921 4.4407 1.0116 | |
dataframe_reindex_daterange 0.4156 0.4104 1.0127 | |
reindex_fillna_pad 0.1432 0.1412 1.0142 | |
stats_rank2d_axis0_average 24.9394 24.5780 1.0147 | |
timeseries_asof_single 0.0578 0.0568 1.0161 | |
timeseries_asof 10.4674 10.2993 1.0163 | |
reindex_fillna_backfill 0.1433 0.1408 1.0178 | |
sort_level_zero 4.3705 4.2822 1.0206 | |
series_constructor_ndarray 0.0118 0.0115 1.0218 | |
timeseries_1min_5min_ohlc 0.6968 0.6764 1.0302 | |
join_dataframe_index_single_key_bigger 6.6493 6.4485 1.0311 | |
timeseries_1min_5min_mean 0.6232 0.6029 1.0336 | |
stats_rank_average 29.3636 28.1260 1.0440 | |
read_table_multiple_date 1995.6260 1889.8520 1.0560 | |
read_table_multiple_date_baseline 917.1288 865.4451 1.0597 | |
indexing_panel_subset 0.5529 0.5102 1.0838 | |
reshape_unstack_simple 3.2659 2.9306 1.1144 | |
timeseries_to_datetime_iso8601 4.2570 3.5535 1.1980 | |
sparse_frame_constructor 5.5988 3.4129 1.6405 | |
reshape_pivot_time_series 176.6999 103.6980 1.7040 | |
datetimeindex_normalize 36.6118 6.9341 5.2800 | |
period_setitem 936.8110 0.2557 3663.0949 | |
Columns: test_name | target_duration [ms] | baseline_duration [ms] | ratio | |
- a Ratio of 1.30 means the target commit is 30% slower then the baseline. | |
Target [e28903c] : ENH: configurability of boolean value indicators. true_values/false_values arguments to read_csv/table. close #2360 | |
Baseline [b5956fd] : RLS: Version 0.9.0 final | |
*** Results were also written to the logfile at '/home/wesm/code/pandas/vb_suite.log' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment