Skip to content

Instantly share code, notes, and snippets.

@wesm
Created November 28, 2012 06:03
Show Gist options
  • Save wesm/4159315 to your computer and use it in GitHub Desktop.
Save wesm/4159315 to your computer and use it in GitHub Desktop.
pandas e28903c vbench vs 0.9.0
*** Processing results...
***
Results:
t_head t_baseline ratio
name
read_csv_comment2 28.6790 366.0152 0.0784
frame_iteritems_cached 0.0677 0.3855 0.1757
read_csv_thou_vb 35.5317 188.2858 0.1887
append_frame_single_homogenous 0.3423 0.8898 0.3847
merge_2intkey_sort 18.5097 47.6546 0.3884
read_csv_vb 18.7248 45.7636 0.4092
read_csv_standard 12.6397 27.9108 0.4529
frame_constructor_ndarray 0.0432 0.0929 0.4652
panel_from_dict_all_different_indexes 75.3200 153.1069 0.4919
panel_from_dict_two_different_indexes 52.0644 88.0649 0.5912
frame_get_numeric_data 0.0653 0.1092 0.5982
groupby_last 3.7499 6.2522 0.5998
groupby_first 3.8356 6.2540 0.6133
append_frame_single_mixed 1.3300 2.0846 0.6380
frame_iteritems 2.4139 3.6719 0.6574
series_align_int64_index 29.0940 39.1760 0.7426
groupby_multi_size 31.1676 40.0273 0.7787
groupby_simple_compress_timing 40.3675 50.6693 0.7967
groupby_frame_singlekey_integer 2.3917 2.9027 0.8240
sparse_series_to_frame 163.3000 187.9480 0.8689
frame_fancy_lookup_all 26.1471 29.9780 0.8722
write_csv_standard 364.8498 413.2900 0.8828
groupby_multi_cython 17.2122 19.2799 0.8928
frame_reindex_both_axes 0.3685 0.4069 0.9058
groupby_frame_median 7.1886 7.9312 0.9064
groupby_multi_series_op 15.7138 17.3286 0.9068
stat_ops_level_frame_sum 3.1070 3.4261 0.9069
stat_ops_level_series_sum_multiple 7.1552 7.8749 0.9086
merge_2intkey_nosort 18.6504 20.4990 0.9098
reshape_stack_simple 2.6133 2.8632 0.9127
sort_level_one 4.3217 4.7277 0.9141
frame_fancy_lookup 2.2856 2.4957 0.9158
dataframe_reindex_columns 0.3034 0.3310 0.9164
join_dataframe_index_single_key_small 5.8404 6.3534 0.9193
groupby_multi_python 52.9893 57.6418 0.9193
frame_ctor_nested_dict_int64 125.6599 136.6770 0.9194
frame_reindex_both_axes_ix 0.4501 0.4886 0.9212
indexing_dataframe_boolean_rows 0.2313 0.2482 0.9319
groupby_indices 6.8819 7.3587 0.9352
reindex_frame_level_align 0.9526 1.0171 0.9366
stat_ops_level_series_sum 2.3302 2.4850 0.9377
frame_reindex_axis1 2.8352 3.0136 0.9408
join_dataframe_index_multi 20.8752 22.1074 0.9443
groupby_multi_different_functions 13.8645 14.6820 0.9443
frame_boolean_row_select 0.2966 0.3133 0.9468
indexing_dataframe_boolean_rows_object 0.4765 0.4994 0.9542
stat_ops_level_frame_sum_multiple 8.2375 8.6054 0.9572
timeseries_asof_nan 9.9166 10.3530 0.9578
concat_series_axis1 68.8407 71.6028 0.9614
join_dataframe_index_single_key_bigger 14.8686 15.4620 0.9616
stat_ops_series_std 0.2485 0.2575 0.9651
reindex_multiindex 1.2675 1.3120 0.9660
groupby_pivot_table 18.9950 19.5181 0.9732
groupby_series_simple_cython 5.2458 5.3860 0.9740
timeseries_infer_freq 10.2526 10.5141 0.9751
groupby_multi_different_numpy_functions 14.2536 14.6002 0.9763
frame_ctor_list_of_dict 95.6521 97.9548 0.9765
groupby_frame_cython_many_columns 3.6637 3.7506 0.9768
groupby_apply_dict_return 39.1278 39.9674 0.9790
frame_ctor_nested_dict 91.8862 93.7090 0.9805
frame_reindex_axis0 1.3451 1.3695 0.9822
reindex_frame_level_reindex 0.9309 0.9468 0.9832
timeseries_period_downsample_mean 6.1616 6.2590 0.9844
timeseries_add_irregular 21.5964 21.9330 0.9847
timeseries_large_lookup_value 0.0240 0.0243 0.9872
match_strings 0.3738 0.3779 0.9890
timeseries_timestamp_tzinfo_cons 0.0162 0.0164 0.9905
frame_to_csv 409.9939 413.8510 0.9907
timeseries_sort_index 21.9657 22.1374 0.9922
panel_from_dict_equiv_indexes 27.0837 27.2880 0.9925
frame_fillna_inplace 16.0971 16.2147 0.9927
frame_fillna_many_columns_pad 15.4141 15.5204 0.9932
index_int64_union 82.2940 82.8500 0.9933
timeseries_slice_minutely 0.0605 0.0609 0.9937
panel_from_dict_same_index 27.2095 27.3502 0.9949
reindex_daterange_pad 0.1834 0.1842 0.9958
datetimeindex_add_offset 0.2538 0.2548 0.9962
series_value_counts_int64 2.5946 2.6043 0.9963
index_int64_intersection 25.5529 25.6429 0.9965
stats_rank2d_axis1_average 14.3055 14.2955 1.0007
series_align_left_monotonic 13.0389 13.0229 1.0012
series_ctor_from_dict 3.7559 3.7363 1.0053
stats_rank_average_int 22.5847 22.4257 1.0071
reindex_daterange_backfill 0.1832 0.1814 1.0101
timeseries_timestamp_downsample_mean 4.4921 4.4407 1.0116
dataframe_reindex_daterange 0.4156 0.4104 1.0127
reindex_fillna_pad 0.1432 0.1412 1.0142
stats_rank2d_axis0_average 24.9394 24.5780 1.0147
timeseries_asof_single 0.0578 0.0568 1.0161
timeseries_asof 10.4674 10.2993 1.0163
reindex_fillna_backfill 0.1433 0.1408 1.0178
sort_level_zero 4.3705 4.2822 1.0206
series_constructor_ndarray 0.0118 0.0115 1.0218
timeseries_1min_5min_ohlc 0.6968 0.6764 1.0302
join_dataframe_index_single_key_bigger 6.6493 6.4485 1.0311
timeseries_1min_5min_mean 0.6232 0.6029 1.0336
stats_rank_average 29.3636 28.1260 1.0440
read_table_multiple_date 1995.6260 1889.8520 1.0560
read_table_multiple_date_baseline 917.1288 865.4451 1.0597
indexing_panel_subset 0.5529 0.5102 1.0838
reshape_unstack_simple 3.2659 2.9306 1.1144
timeseries_to_datetime_iso8601 4.2570 3.5535 1.1980
sparse_frame_constructor 5.5988 3.4129 1.6405
reshape_pivot_time_series 176.6999 103.6980 1.7040
datetimeindex_normalize 36.6118 6.9341 5.2800
period_setitem 936.8110 0.2557 3663.0949
Columns: test_name | target_duration [ms] | baseline_duration [ms] | ratio
- a Ratio of 1.30 means the target commit is 30% slower then the baseline.
Target [e28903c] : ENH: configurability of boolean value indicators. true_values/false_values arguments to read_csv/table. close #2360
Baseline [b5956fd] : RLS: Version 0.9.0 final
*** Results were also written to the logfile at '/home/wesm/code/pandas/vb_suite.log'
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment