Objective: Generate a mermaid diagram of an AWS VPC network architecture
Requirements:
- CLI Tools: AWS CLI installed available for use
- MCPs: AWS API MCP, https://awslabs.github.io/mcp/servers/aws-api-mcp-server/
{
"mcpServers": {
| #!/bin/bash | |
| # Terraform Cleanup Script | |
| # This script finds and allows deletion of .terraform folders | |
| set -e | |
| echo "==================================" | |
| echo " TERRAFORM FOLDER CLEANUP" | |
| echo "==================================" |
Objective: Generate a mermaid diagram of an AWS VPC network architecture
Requirements:
{
"mcpServers": {
| from typing import Annotated | |
| import dagger | |
| from dagger import Doc, dag, field, function, object_type | |
| @object_type | |
| class Workspace: | |
| """A module for editing code""" |
| export function extractTerraformResources(content: string): TerraformResource[] { | |
| logger.info('Starting Terraform resource extraction'); | |
| const resources: TerraformResource[] = []; | |
| const lines = content.split('\n'); | |
| logger.debug('File processing started', { totalLines: lines.length }); | |
| let bracketLevel = 0; | |
| let currentResource: Partial<TerraformResource> | null = null; | |
| let resourceContent: string[] = []; | |
| import numpy | |
| import scipy.optimize | |
| import pandas | |
| def probability_constraint(x): | |
| j, n = x.shape | |
| Aeq = numpy.ones([1, j]) | |
| beq = numpy.array([1.]) |
| apiVersion: v1 | |
| kind: ConfigMap | |
| metadata: | |
| name: workflow-controller-configmap | |
| namespace: default | |
| data: | |
| artifactRepository: | | |
| archiveLogs: true | |
| s3: | |
| repoName: MyArtifactRepo |
| require 'csv' | |
| require "bigdecimal" | |
| require 'rubygems' | |
| require 'bundler/setup' | |
| require 'pry' | |
| Bundler.require | |
| file_name = "mes-july2020.csv" |
| [ | |
| { | |
| "city": "New York", | |
| "growth_from_2000_to_2013": "4.8%", | |
| "latitude": 40.7127837, | |
| "longitude": -74.0059413, | |
| "population": "8405837", | |
| "rank": "1", | |
| "state": "New York" | |
| }, |
| from datetime import datetime, timedelta, date | |
| import pytz | |
| from os import environ, path, makedirs | |
| import pandas as pd | |
| import quandl | |
| import fasterparquet | |
| start_date = "1995-01-01" |
| # Pandas operations | |
| ## getting and setting df rows | |
| credit goes to https://stackoverflow.com/a/29262040/665578 | |
| for i, row in df.iterrows(): | |
| ifor_val = something | |
| if <condition>: | |
| ifor_val = something_else |