一系列常用模型的Keras实现
Multilayer Perceptron (MLP) for multi-class softmax classification
from keras.models import Sequential
import os | |
import autogen | |
import memgpt.autogen.memgpt_agent as memgpt_autogen | |
import memgpt.autogen.interface as autogen_interface | |
import memgpt.agent as agent | |
import memgpt.system as system | |
import memgpt.utils as utils | |
import memgpt.presets as presets | |
import memgpt.constants as constants | |
import memgpt.personas.personas as personas |
import json | |
import numpy as np | |
import keras | |
import keras.preprocessing.text as kpt | |
from keras.preprocessing.text import Tokenizer | |
from keras.models import model_from_json | |
# we're still going to use a Tokenizer here, but we don't need to fit it | |
tokenizer = Tokenizer(num_words=3000) | |
# for human-friendly printing |
model = Sequential() | |
model.add(Embedding(num_words, 32, input_length=max_log_length)) | |
# Prevent overfitting using dropout method of regularization | |
model.add(Dropout(0.5)) | |
model.add(LSTM(64, recurrent_dropout=0.5)) | |
model.add(Dropout(0.5)) | |
# Condense to single binary output value | |
model.add(Dense(1, activation='sigmoid')) | |
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
# Training set automatically split 75/25 to check validation loss/accuracy at each epoch |
# Copyright 2018 SwiftComply.com | |
commands: | |
01_node_install: | |
test: "[ `node --version` != 'v8.10.0' ]" | |
command: "curl --silent --location https://rpm.nodesource.com/setup_8.x | sudo bash -" | |
02_yarn_repo: | |
test: "[ ! -f /etc/yum.repos.d/yarn.repo ]" | |
command: "curl --silent --location https://dl.yarnpkg.com/rpm/yarn.repo | sudo tee /etc/yum.repos.d/yarn.repo" | |
03_yarn_install: | |
test: "[ ! -x /usr/bin/yarn ]" |
I got to here after spending hours trying to deploy to an Elastic Beanstalk instance via CircleCi 2.0 so I thought I'd write up what worked for me to hopefully help others. Shout out to RobertoSchneiders who's steps for getting it to work with CircleCi 1.0 were my starting point.
For the record, I'm not the most server-savvy of developers so there may be a better way of doing this.
=Navigating= | |
visit('/projects') | |
visit(post_comments_path(post)) | |
=Clicking links and buttons= | |
click_link('id-of-link') | |
click_link('Link Text') | |
click_button('Save') | |
click('Link Text') # Click either a link or a button | |
click('Button Value') |
#!/bin/sh | |
# Credits to: | |
# - http://vstone.eu/reducing-vagrant-box-size/ | |
# - https://github.com/mitchellh/vagrant/issues/343 | |
aptitude -y purge ri | |
aptitude -y purge installation-report landscape-common wireless-tools wpasupplicant ubuntu-serverguide | |
aptitude -y purge python-dbus libnl1 python-smartpm python-twisted-core libiw30 | |
aptitude -y purge python-twisted-bin libdbus-glib-1-2 python-pexpect python-pycurl python-serial python-gobject python-pam python-openssl libffi5 |
Download net install iso. Find a mirror close to you at http://isoredirect.centos.org/centos/6/isos/x86_64/
- Name: vagrant-centos
- Operating System: Linux
- Version: Red Hat 64bit