Skip to content

Instantly share code, notes, and snippets.

@wewindy
Last active March 18, 2021 18:43
Show Gist options
  • Save wewindy/262993d0141cf5316e69dc7d325a8717 to your computer and use it in GitHub Desktop.
Save wewindy/262993d0141cf5316e69dc7d325a8717 to your computer and use it in GitHub Desktop.
jacobi_alg
import Matrix2 from '../core/mat2.js'
import Matrix3, { transpose, multiply, } from '../core/mat3.js'
/**
* 雅可比迭代法求解实对称矩阵的特征向量、特征值
* @param {Matrix2 | Matrix3} matrix 二维数组,当前支持二维、三维迭代求解
* @returns {Object} 返回一个对象 obj, obj.eigenVectors 是特征向量(二维数组),obj.eigenValues 是特征值(一维数组)
*/
function jacobi(matrix) {
const length = matrix.length === undefined ? matrix.dimensions : matrix.length
if (length === 2)
return jacobi2d(matrix)
else if (length === 3)
return jacobi3d(matrix)
else
throw Error('当前还不支持其他维度的实对称矩阵求解特征向量、特征值')
}
function jacobi2d(matrix) {
const m = Matrix2.fromElementsArray(matrix.flat())
let rotationAngle = 0
/** 计算 Givens 旋转矩阵的旋转角 */
if (m.m11 - m.m22 === 0) {
rotationAngle = Math.PI / 4
} else {
const tan2xita = 2 * m.m12 / (m.m11 - m.m22)
rotationAngle = Math.atan2(tan2xita, 1) / 2
}
/** 构造二阶 Givens 旋转矩阵 */
const givensMatrix = Matrix2.fromElementsArray([
Math.cos(rotationAngle), Math.sin(rotationAngle),
-1 * Math.sin(rotationAngle), Math.cos(rotationAngle)
])
/** 获取 Givens 旋转矩阵的逆矩阵 */
const inverseGivensMatrix = Matrix2.inverse(givensMatrix)
/** 求解得到旋转后的矩阵,即斜对角线特征值矩阵 */
const eigenValuesMatrix = Matrix2.multiply(Matrix2.multiply(givensMatrix, m), inverseGivensMatrix)
return {
eigenValues: [eigenValuesMatrix.m11, eigenValuesMatrix.m22],
eigenVectors: [
[inverseGivensMatrix.m11, inverseGivensMatrix.m21],
[inverseGivensMatrix.m12, inverseGivensMatrix.m22]
]
}
}
function getGivensIndexes(m) {
const m12 = m.m12, m13 = m.m13, m23 = m.m23
let max = m12 > m13 ? m12 : m13
max = max > m23 ? max : m23
if (max === m12) {
return [1, 2]
} else if (max === m13) {
return [1, 3]
} else {
return [2, 3]
}
}
function createGivens(m, p, q, result) {
if (result === undefined) {
result = new Matrix3()
}
let rad = 0
const m_pp = m[`m${p}${p}`]
const m_qq = m[`m${q}${q}`]
const m_pq = m[`m${p}${q}`]
if (m_pp === m_qq) {
rad = Math.PI / 4
} else {
rad = Math.atan2(2 * m_pq / (m_pp - m_qq), 1) / 2
}
// 例如
// [
// mpp, mpq, 0
// mqp, mqq, 0
// 0, 0, 1
// ]
result[`m${p}${p}`] = Math.cos(rad)
result[`m${q}${q}`] = Math.cos(rad)
result[`m${p}${q}`] = Math.sin(rad)
result[`m${q}${p}`] = -Math.sin(rad)
return result
}
function jacobiLoopCondition(m) {
const topTrianglesTimes2 = (m.m12 ** 2 + m.m13 ** 2 + m.m23 ** 2) * 2
return topTrianglesTimes2 < 0.1 ** 10
}
let givensLeft = new Matrix3()
let givensRight = new Matrix3()
let times = 0
function jacobi3d(m, maxTime = 10) {
times += 1
/* step1. 寻找行列号 p q */
const [p, q] = getGivensIndexes(m)
/* step2. 构造 Givens 矩阵,及其逆矩阵(即转置) */
const tempLeft = createGivens(m, p, q, new Matrix3())
const tempRight = transpose(tempLeft, new Matrix3())
/* step3. 累乘旧矩阵 */
multiply(tempLeft, givensLeft, givensLeft)
multiply(givensRight, tempRight, givensRight)
/* step4. Givens 旋转 */
const leftMultiply = multiply(tempLeft, m, new Matrix3())
const tempMatrix = multiply(leftMultiply, tempRight, new Matrix3())
/* step5. 判断条件 */
if (times >= maxTime || jacobiLoopCondition(tempMatrix)) {
return {
eigenValues: [tempMatrix.m11, tempMatrix.m22, tempMatrix.m33], // 特征值
eigenVectors: [
[givensRight.m11, givensRight.m21, givensRight.m31],
[givensRight.m12, givensRight.m22, givensRight.m32],
[givensRight.m13, givensRight.m23, givensRight.m33]
]
}
} else {
return jacobi3d(tempMatrix)
}
}
export default jacobi
@wewindy
Copy link
Author

wewindy commented Mar 18, 2021

计算二三维实对称矩阵的特征值、特征向量
例如

import jacobi from './alg/jacobi.js'
import { fromValuesArray } from './core/mat3.js'
const data = [
  4, 2, 2,
  2, 5, 1,
  2, 1, 6
]

const m = fromValuesArray(data)
const result = jacobi(m)

得到三个近似特征值:2.1260943732719926, 8.387618874579875, 4.486286752148127
对应三个特征向量:
[0.8292299607559941, -0.46364488168716955, -0.31210750691052425]
[0.5388204749371205, 0.5148049627855905, 0.6668195753574295]
[-0.14849298964310811, -0.7211166854099392, 0.676713054440532]

与C++、网络计算版本相差在 5% 内
算法有待优化,受限于求旋转角的精度瑕疵,争取能将特征向量逼近到1%内

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment