Created
August 28, 2017 20:19
-
-
Save whilo/2a6ca937a53b8a1403afde313c7f123a to your computer and use it in GitHub Desktop.
SGHMC port from matlab.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
import torch.autograd as autograd | |
import torch.optim as optim | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.gridspec as gridspec | |
import os | |
import math | |
from torch.autograd import Variable | |
def sghmc(U, m, dt, nstep, x, C, V): | |
# print("x: {}".format(x)) | |
#x.grad.data.zero_() | |
p = torch.randn(x.data.shape[0], x.data.shape[1]) * math.sqrt(m) | |
B = 0.5 * V * dt | |
D = math.sqrt( 2 * (C-B) * dt ) | |
for i in range(nstep): | |
U(x).backward() | |
gradU = x.grad.data + torch.randn(1) * 2 | |
p = p - gradU * dt - p * C * dt + torch.randn(1) * D | |
x = Variable(x.data + p/m * dt, requires_grad=True) | |
return x | |
nsample = 80000 | |
xStep = 0.1 | |
m = 1 | |
C = 3 | |
dt = 0.1 | |
nstep = 50 | |
V = 4 | |
# set random seed | |
torch.manual_seed(10) | |
#%% set up functions | |
#U = @(x) (-2* x.^2 + x.^4); | |
#gradU = @(x) ( -4* x + 4*x.^3) + randn(1) * 2; | |
#gradUPerfect = @(x) ( - 4*x + 4*x.^3 ); | |
#fgname = 'figure/func4'; | |
#hmccmp; | |
def U(x): | |
return - 2 * torch.pow(x, 2) + torch.pow(x, 4) | |
#U(x) | |
#x = torch.Tensor([[0.3, 0.2]]) | |
samples = torch.zeros(nsample,1) | |
x = Variable(torch.Tensor([[0]]), requires_grad=True) | |
for i in range(nsample): | |
x = sghmc( U, m, dt, nstep, x, C, V ) | |
#print("{}: {}".format(i, x)) | |
samples[i] = x.data | |
xGrid = np.linspace(-3, 3, 60) | |
foo = plt.hist(samples.numpy(), xGrid) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment