Skip to content

Instantly share code, notes, and snippets.

@wiccy46
Last active April 27, 2020 21:15
Show Gist options
  • Save wiccy46/ff93a49e5d5ff47b6ecb07c0d96f0490 to your computer and use it in GitHub Desktop.
Save wiccy46/ff93a49e5d5ff47b6ecb07c0d96f0490 to your computer and use it in GitHub Desktop.
[data structure] A collection of data structure related snippet #python #datastructure
"""Quick-Union
worst case is still O(N^2) if tree too tall
"""
"""Find root"""
# id is your tree array
def root(i):
while i != id[i]:
id[i] = id[id[i]]; # one pass variant
i = id[i]
return i
def union(p, q):
i = root(p)
j = root(q)
id[i] = j
""" BIG O cheatsheet
----------------------+----------+------------+----------+--------------+
| | Insert | Delete | Search | Space Usage |
+----------------------+----------+------------+----------+--------------+
| Unsorted array | O(1) | O(1) | O(n) | O(n) |
| Value-indexed array | O(1) | O(1) | O(1) | O(n) |
| Sorted array | O(n) | O(n) | O(log n) | O(n) |
| Unsorted linked list | O(1)* | O(1)* | O(n) | O(n) |
| Sorted linked list | O(n)* | O(1)* | O(n) | O(n) |
| Balanced binary tree | O(log n) | O(log n) | O(log n) | O(n) |
| Heap | O(log n) | O(log n)** | O(n) | O(n) |
| Hash table | O(1) | O(1) | O(1) | O(n) |
+----------------------+----------+------------+----------+--------------+
* The cost to add or delete an element into a known location in the list
(i.e. if you have an iterator to the location) is O(1). If you don't
know the location, then you need to traverse the list to the location
of deletion/insertion, which takes O(n) time.
** The deletion cost is O(log n) for the minimum or maximum, O(n) for an
arbitrary element.
"""
"""Heapsort
"""
def heapify(arr, n, i):
largest = i # Initialize largest as root
l = 2 * i + 1 # left = 2*i + 1
r = 2 * i + 2 # right = 2*i + 2
# See if left child of root exists and is
# greater than root
if l < n and arr[i] < arr[l]:
largest = l
# See if right child of root exists and is
# greater than root
if r < n and arr[largest] < arr[r]:
largest = r
# Change root, if needed
if largest != i:
arr[i],arr[largest] = arr[largest],arr[i] # swap
# Heapify the root.
heapify(arr, n, largest)
# The main function to sort an array of given size
def heapSort(arr):
n = len(arr)
# Build a maxheap.
# Basically heapify find the largest.
for i in range(n, -1, -1):
heapify(arr, n, i)
# One by one extract elements
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i] # swap
heapify(arr, i, 0)
# Driver code to test above
arr = [ 12, 11, 13, 5, 6, 7]
heapSort(arr) # Inplace peration
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment