Last active
April 1, 2025 12:53
-
Star
(1,167)
You must be signed in to star a gist -
Fork
(367)
You must be signed in to fork a gist
-
-
Save willccbb/4676755236bb08cab5f4e54a0475d6fb to your computer and use it in GitHub Desktop.
GRPO Llama-1B
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# train_grpo.py | |
# | |
# See https://github.com/willccbb/verifiers for ongoing developments | |
# | |
import re | |
import torch | |
from datasets import load_dataset, Dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import LoraConfig | |
from trl import GRPOConfig, GRPOTrainer | |
# Load and prep dataset | |
SYSTEM_PROMPT = """ | |
Respond in the following format: | |
<reasoning> | |
... | |
</reasoning> | |
<answer> | |
... | |
</answer> | |
""" | |
XML_COT_FORMAT = """\ | |
<reasoning> | |
{reasoning} | |
</reasoning> | |
<answer> | |
{answer} | |
</answer> | |
""" | |
def extract_xml_answer(text: str) -> str: | |
answer = text.split("<answer>")[-1] | |
answer = answer.split("</answer>")[0] | |
return answer.strip() | |
def extract_hash_answer(text: str) -> str | None: | |
if "####" not in text: | |
return None | |
return text.split("####")[1].strip().replace(",", "").replace("$", "") | |
# uncomment middle messages for 1-shot prompting | |
def get_gsm8k_questions(split = "train") -> Dataset: | |
data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore | |
data = data.map(lambda x: { # type: ignore | |
'prompt': [ | |
{'role': 'system', 'content': SYSTEM_PROMPT}, | |
#{'role': 'user', 'content': 'What is the largest single-digit prime number?'}, | |
#{'role': 'assistant', 'content': XML_COT_FORMAT.format( | |
# reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", | |
# answer="7" | |
#)}, | |
{'role': 'user', 'content': x['question']} | |
], | |
'answer': extract_hash_answer(x['answer']) | |
}) # type: ignore | |
return data # type: ignore | |
dataset = get_gsm8k_questions() | |
# Reward functions | |
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]: | |
responses = [completion[0]['content'] for completion in completions] | |
q = prompts[0][-1]['content'] | |
extracted_responses = [extract_xml_answer(r) for r in responses] | |
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") | |
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] | |
def int_reward_func(completions, **kwargs) -> list[float]: | |
responses = [completion[0]['content'] for completion in completions] | |
extracted_responses = [extract_xml_answer(r) for r in responses] | |
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses] | |
def strict_format_reward_func(completions, **kwargs) -> list[float]: | |
"""Reward function that checks if the completion has a specific format.""" | |
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$" | |
responses = [completion[0]["content"] for completion in completions] | |
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | |
return [0.5 if match else 0.0 for match in matches] | |
def soft_format_reward_func(completions, **kwargs) -> list[float]: | |
"""Reward function that checks if the completion has a specific format.""" | |
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>" | |
responses = [completion[0]["content"] for completion in completions] | |
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | |
return [0.5 if match else 0.0 for match in matches] | |
def count_xml(text) -> float: | |
count = 0.0 | |
if text.count("<reasoning>\n") == 1: | |
count += 0.125 | |
if text.count("\n</reasoning>\n") == 1: | |
count += 0.125 | |
if text.count("\n<answer>\n") == 1: | |
count += 0.125 | |
count -= len(text.split("\n</answer>\n")[-1])*0.001 | |
if text.count("\n</answer>") == 1: | |
count += 0.125 | |
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001 | |
return count | |
def xmlcount_reward_func(completions, **kwargs) -> list[float]: | |
contents = [completion[0]["content"] for completion in completions] | |
return [count_xml(c) for c in contents] | |
#model_name = "meta-llama/Llama-3.2-1B-Instruct" | |
model_name = "Qwen/Qwen2.5-1.5B-Instruct" | |
if "Llama" in model_name: | |
output_dir = "outputs/Llama-1B-GRPO" | |
run_name = "Llama-1B-GRPO-gsm8k" | |
else: | |
output_dir="outputs/Qwen-1.5B-GRPO" | |
run_name="Qwen-1.5B-GRPO-gsm8k" | |
training_args = GRPOConfig( | |
output_dir=output_dir, | |
run_name=run_name, | |
learning_rate=5e-6, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.99, | |
weight_decay = 0.1, | |
warmup_ratio = 0.1, | |
lr_scheduler_type='cosine', | |
logging_steps=1, | |
bf16=True, | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=4, | |
num_generations=16, | |
max_prompt_length=256, | |
max_completion_length=786, | |
num_train_epochs=1, | |
save_steps=100, | |
max_grad_norm=0.1, | |
report_to="wandb", | |
log_on_each_node=False, | |
) | |
peft_config = LoraConfig( | |
r=16, | |
lora_alpha=64, | |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"], | |
task_type="CAUSAL_LM", | |
lora_dropout=0.05, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
device_map=None | |
).to("cuda") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
# use peft at your own risk; not working for me with multi-GPU training | |
trainer = GRPOTrainer( | |
model=model, | |
processing_class=tokenizer, | |
reward_funcs=[ | |
xmlcount_reward_func, | |
soft_format_reward_func, | |
strict_format_reward_func, | |
int_reward_func, | |
correctness_reward_func], | |
args=training_args, | |
train_dataset=dataset, | |
#peft_config=peft_config | |
) | |
trainer.train() |
I got the same problem. I trained 7B with batch_size == 1, but it just keep reporting oom.
@harrywoo @Tuziking I had the same problem. I then noticed that these values are actually huge for most cases:
max_prompt_length=256,
max_completion_length=786,
786 generated tokens to process per generation requires a lot of memory, especially if your group size is large. Try to set this to 150 or 250 and see if it reduces memory usage. Hope this helps!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @fsxbhyy, did you load the model in
torch.bfloat16
? I used to encounter such issue when I loaded models intorch.float16
instead ofbfloat
. I guessfloat16
in this context leads to numerical instability, leading to NaN probs. Hope this helps!