Created
February 27, 2020 14:58
-
-
Save williamFalcon/38255319e7c17ceeab78e74a7ad9e6c0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import pytorch_lightning as pl | |
from torch.utils.data import DataLoader, random_split | |
from torch.nn import functional as F | |
from torchvision.datasets import MNIST | |
from torchvision import datasets, transforms | |
import os | |
# ----------------- | |
# MODEL | |
# ----------------- | |
class LightningMNISTClassifier(pl.LightningModule): | |
def __init__(self): | |
super(LightningMNISTClassifier, self).__init__() | |
# mnist images are (1, 28, 28) (channels, width, height) | |
self.layer_1 = torch.nn.Linear(28 * 28, 128) | |
self.layer_2 = torch.nn.Linear(128, 256) | |
self.layer_3 = torch.nn.Linear(256, 10) | |
def forward(self, x): | |
batch_size, channels, width, height = x.sizes() | |
# (b, 1, 28, 28) -> (b, 1*28*28) | |
x = x.view(batch_size, -1) | |
# layer 1 | |
x = self.layer_1(x) | |
x = torch.relu(x) | |
# layer 2 | |
x = self.layer_2(x) | |
x = torch.relu(x) | |
# layer 3 | |
x = self.layer_3(x) | |
# probability distribution over labels | |
x = torch.log_softmax(x, dim=1) | |
return x | |
# ---------------- | |
# DATA | |
# ---------------- | |
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) | |
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform) | |
mnist_test = MNIST(os.getcwd(), train=False, download=True, transform=transform) | |
# train (55,000 images), val split (5,000 images) | |
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) | |
mnist_test = MNIST(os.getcwd(), train=False, download=True) | |
# The dataloaders handle shuffling, batching, etc... | |
mnist_train = DataLoader(mnist_train, batch_size=64) | |
mnist_val = DataLoader(mnist_val, batch_size=64) | |
mnist_test = DataLoader(mnist_test, batch_size=64) | |
# ---------------- | |
# OPTIMIZER | |
# ---------------- | |
pytorch_model = MNISTClassifier() | |
optimizer = torch.optim.Adam(pytorch_model.parameters(), lr=1e-3) | |
# ---------------- | |
# LOSS | |
# ---------------- | |
def cross_entropy_loss(logits, labels): | |
return F.nll_loss(logits, labels) | |
# ---------------- | |
# TRAINING LOOP | |
# ---------------- | |
num_epochs = 1 | |
for epoch in range(num_epochs): | |
# TRAINING LOOP | |
for train_batch in mnist_train: | |
x, y = train_batch | |
logits = pytorch_model(x) | |
loss = cross_entropy_loss(logits, y) | |
print('train loss: ', loss.item()) | |
loss.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
# VALIDATION LOOP | |
with torch.no_grad(): | |
val_loss = [] | |
for val_batch in mnist_val: | |
x, y = val_batch | |
logits = pytorch_model(x) | |
val_loss.append(cross_entropy_loss(logits, y).item()) | |
val_loss = torch.mean(torch.tensor(val_loss)) | |
print('val_loss: ', val_loss.item()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment