Last active
December 1, 2019 11:21
-
-
Save williamFalcon/7cc624693e7c790310fc273aafc02c3b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Tutorial from: https://keras.io/examples/mnist_cnn/ | |
# ------------ | |
# SECTION 1 | |
# ------------ | |
from __future__ import print_function | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Flatten | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras import backend as K | |
# ------------ | |
# SECTION 2 | |
# ------------ | |
batch_size = 128 | |
num_classes = 10 | |
epochs = 12 | |
# input image dimensions | |
img_rows, img_cols = 28, 28 | |
# the data, split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
if K.image_data_format() == 'channels_first': | |
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) | |
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) | |
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print('x_train shape:', x_train.shape) | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
# ------------ | |
# SECTION 3 | |
# ------------ | |
model = Sequential() | |
model.add(Conv2D(32, kernel_size=(3, 3), | |
activation='relu', | |
input_shape=input_shape)) | |
model.add(Conv2D(64, (3, 3), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(num_classes, activation='softmax')) | |
# ------------ | |
# SECTION 4 | |
# ------------ | |
model.compile(loss=keras.losses.categorical_crossentropy, | |
optimizer=keras.optimizers.Adadelta(), | |
metrics=['accuracy']) | |
model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=1, | |
validation_data=(x_test, y_test)) | |
# ------------ | |
# SECTION 5 | |
# ------------ | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment