Last active
March 6, 2020 11:11
-
-
Save williamFalcon/b68e8f7786ca2d39d3c96123dd9e44f2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# model | |
class Net(LightningModule): | |
def __init__(self): | |
self.layer_1 = torch.nn.Linear(28 * 28, 128) | |
self.layer_2 = torch.nn.Linear(128, 10) | |
def forward(self, x): | |
x = x.view(x.size(0), -1) | |
x = self.layer_1(x) | |
x = F.relu(x) | |
x = self.layer_2(x) | |
return x | |
def prepare_data(self): | |
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) | |
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform) | |
self.mnist_test = MNIST(os.getcwd(), train=False, download=True, transform=transform) | |
self.mnist_train, self.mnist_val = random_split(mnist_train, [55000, 5000]) | |
def train_dataloader(self): | |
mnist_train = DataLoader(self.mnist_train, batch_size=64) | |
return mnist_train | |
def val_dataloader(self): | |
mnist_val = DataLoader(self.mnist_val, batch_size=64) | |
return mnist_val | |
def test_dataloader(self): | |
return DataLoader(self.mnist_test, batch_size=64) | |
def configure_optimizers(self): | |
optimizer = Adam(self.parameters(), lr=1e-3) | |
return optimizer, StepLR(optimizer, step_size=1) | |
def training_step(self, batch, batch_idx): | |
data, target = batch | |
output = self.forward(data) | |
loss = F.nll_loss(output, target) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
data, target = batch | |
output = self.forward(data) | |
loss = F.nll_loss(output, target) | |
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct = pred.eq(target.view_as(pred)).sum().item() | |
return {'val_loss': loss, 'correct': correct} | |
def validation_epoch_end(self, outputs): | |
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() | |
tensorboard_logs = {'val_loss': avg_loss} | |
return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} | |
if __name__ == '__main__: | |
net = Net() | |
trainer = Trainer() | |
trainer.fit(net) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment