Last active
March 6, 2020 11:20
-
-
Save williamFalcon/fda6eb9045b7789f5f22ac01bc938439 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# model | |
class Net(nn.Module): | |
def __init__(self): | |
self.layer_1 = torch.nn.Linear(28 * 28, 128) | |
self.layer_2 = torch.nn.Linear(128, 10) | |
def forward(self, x): | |
x = x.view(x.size(0), -1) | |
x = self.layer_1(x) | |
x = F.relu(x) | |
x = self.layer_2(x) | |
return x | |
# download data | |
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) | |
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform) | |
mnist_test = MNIST(os.getcwd(), train=False, download=True, transform=transform) | |
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) | |
# train loader | |
mnist_train = DataLoader(mnist_train, batch_size=64) | |
# val loader | |
mnist_val = DataLoader(mnist_val, batch_size=64) | |
# test loader | |
mnist_test = DataLoader(mnist_test, batch_size=64) | |
# optimizer + scheduler | |
net = Net() | |
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3) | |
scheduler = StepLR(optimizer, step_size=1) | |
# train | |
for epoch in range(1, 100): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
# validate | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment