Created
October 12, 2018 17:03
-
-
Save willirath/9d762394b4fa27372a3b654005b8ef15 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Monte Carlo Estimate of $\\pi$\n", | |
"\n", | |
"<img src=\"http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg\" \n", | |
" width=\"50%\" \n", | |
" align=top\n", | |
" alt=\"Dask logo\">\n", | |
"<img src=\"https://upload.wikimedia.org/wikipedia/commons/b/ba/Monte-Carlo01.gif\" \n", | |
" width=\"30%\" \n", | |
" align=top\n", | |
" alt=\"PI monte-carlo estimate\">\n", | |
" \n", | |
"Using [Dask's adaptivity](http://docs.dask.org/en/latest/setup/adaptive.html), we'll show that it is possible to scale the available resources to meet almost identical wall times irrespective of the acutal work load:\n", | |
"\n", | |
"- Estimating $\\pi$ from 16 GB of random data is done in 17 seconds using 3 workers (with 2 cores each).\n", | |
"- Estimating $\\pi$ from 512 GB of random data is done in 19 seconds using 142 workers (with 2 cores each).\n", | |
"- Estimating $\\pi$ from 1024 GB of random data is done in 21 seconds using 273 workers (with 2 cores each)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from dask_kubernetes import KubeCluster\n", | |
"cluster = KubeCluster(n_workers=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# check Adaptive? for help on adapt's kwargs.\n", | |
"from dask.distributed import Adaptive" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cluster.adapt(minimum=1, maximum=400,\n", | |
" target_duration=\"20s\", # more realistic than the default \"5s\"?\n", | |
" wait_count=10, # 10 seconds before killing an idle worker\n", | |
" scale_factor=1.2); # scale slower than doubling (default)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table style=\"border: 2px solid white;\">\n", | |
"<tr>\n", | |
"<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
"<h3>Client</h3>\n", | |
"<ul>\n", | |
" <li><b>Scheduler: </b>tcp://10.23.27.5:37004\n", | |
" <li><b>Dashboard: </b><a href='/user/willirath/proxy/8787/status' target='_blank'>/user/willirath/proxy/8787/status</a>\n", | |
"</ul>\n", | |
"</td>\n", | |
"<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
"<h3>Cluster</h3>\n", | |
"<ul>\n", | |
" <li><b>Workers: </b>0</li>\n", | |
" <li><b>Cores: </b>0</li>\n", | |
" <li><b>Memory: </b>0 B</li>\n", | |
"</ul>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"<Client: scheduler='tcp://10.23.27.5:37004' processes=0 cores=0>" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"from dask.distributed import Client\n", | |
"c = Client(cluster)\n", | |
"c" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"(Check the dash board to see the cluster scale up and down!)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import dask.array as da\n", | |
"import numpy as np\n", | |
"from time import time\n", | |
"\n", | |
"def calc_pi_mc(size):\n", | |
" xy = da.random.uniform(0, 1, size=(size / 8 / 2, 2), chunks=(0.25e9 / 8, 2))\n", | |
" \n", | |
" in_circle = ((xy ** 2).sum(axis=-1) < 1)\n", | |
" pi = 4 * in_circle.mean()\n", | |
"\n", | |
" start = time()\n", | |
" pi = pi.compute()\n", | |
" end = time()\n", | |
" \n", | |
" num_pods = len(cluster.pods())\n", | |
" \n", | |
" print(\"Size of data:\", xy.nbytes / 1e9, \"GB\")\n", | |
" print(\"Monte-Carlo pi:\", pi)\n", | |
" print(\"Numpys pi:\", np.pi)\n", | |
" print(\"Delta:\", abs(pi - np.pi))\n", | |
" print(\"Duration: {:.2f} seconds with {} pods\".format(end-start, num_pods))\n", | |
" print()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Size of data: 1.0 GB\n", | |
"Monte-Carlo pi: 3.141738048\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 0.0001453944102070004\n", | |
"Duration: 4.68 seconds with 1 pods\n", | |
"\n", | |
"Size of data: 2.0 GB\n", | |
"Monte-Carlo pi: 3.1416384\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 4.574641020704817e-05\n", | |
"Duration: 5.31 seconds with 1 pods\n", | |
"\n", | |
"Size of data: 4.0 GB\n", | |
"Monte-Carlo pi: 3.141615792\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 2.3138410206957616e-05\n", | |
"Duration: 7.91 seconds with 2 pods\n", | |
"\n", | |
"Size of data: 8.0 GB\n", | |
"Monte-Carlo pi: 3.141654136\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 6.148241020698109e-05\n", | |
"Duration: 10.73 seconds with 3 pods\n", | |
"\n", | |
"Size of data: 16.0 GB\n", | |
"Monte-Carlo pi: 3.141506724\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 8.592958979303233e-05\n", | |
"Duration: 17.35 seconds with 3 pods\n", | |
"\n", | |
"Size of data: 32.0 GB\n", | |
"Monte-Carlo pi: 3.141638062\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 4.5408410207059546e-05\n", | |
"Duration: 12.77 seconds with 12 pods\n", | |
"\n", | |
"Size of data: 64.0 GB\n", | |
"Monte-Carlo pi: 3.141572989\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 1.9664589792967035e-05\n", | |
"Duration: 19.20 seconds with 15 pods\n", | |
"\n", | |
"Size of data: 128.0 GB\n", | |
"Monte-Carlo pi: 3.141593464\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 8.104102069417252e-07\n", | |
"Duration: 17.55 seconds with 36 pods\n", | |
"\n", | |
"Size of data: 256.0 GB\n", | |
"Monte-Carlo pi: 3.14161230525\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 1.9651660206676524e-05\n", | |
"Duration: 18.69 seconds with 68 pods\n", | |
"\n", | |
"Size of data: 512.0 GB\n", | |
"Monte-Carlo pi: 3.14158963425\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 3.019339793297604e-06\n", | |
"Duration: 18.71 seconds with 142 pods\n", | |
"\n", | |
"Size of data: 1024.0 GB\n", | |
"Monte-Carlo pi: 3.1415884875\n", | |
"Numpys pi: 3.141592653589793\n", | |
"Delta: 4.166089793145034e-06\n", | |
"Duration: 20.80 seconds with 273 pods\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"from time import sleep\n", | |
"\n", | |
"for size in [1e9 * 2 ** n for n in range(11)]:\n", | |
" \n", | |
" calc_pi_mc(size)\n", | |
" sleep(10) # allow for some scale-down time" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [default]", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment