-
-
Save willtemperley/85528e00f059ced13fb98084b5c8be29 to your computer and use it in GitHub Desktop.
Simplification of a 3D polyline using the Ramer–Douglas–Peucker algorithm in Swift
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Simplify.swift | |
// | |
// Simplification of a 3D-polyline. | |
// A port of https://github.com/hgoebl/simplify-java for Swift | |
// | |
// | |
// The MIT License (MIT) | |
// | |
// Created by Lachlan Hurst on 10/02/2015. | |
// Copyright (c) 2015 Lachlan Hurst. | |
// | |
// Permission is hereby granted, free of charge, to any person obtaining a copy | |
// of this software and associated documentation files (the "Software"), to deal | |
// in the Software without restriction, including without limitation the rights | |
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
// copies of the Software, and to permit persons to whom the Software is | |
// furnished to do so, subject to the following conditions: | |
// | |
// The above copyright notice and this permission notice shall be included in | |
// all copies or substantial portions of the Software. | |
// | |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
// THE SOFTWARE. | |
// | |
// | |
import UIKit | |
class Point3D { | |
var x: Float = 0.0 | |
var y: Float = 0.0 | |
var z: Float = 0.0 | |
} | |
class Simplify { | |
func simplify(#points:[Point3D], tolerance:Float, highestQuality:Bool) -> [Point3D] { | |
let sqTolerance = tolerance * tolerance | |
var newpoints = points | |
if !highestQuality { | |
newpoints = simplifyRadialDistance(newpoints, sqTolerance: sqTolerance) | |
} | |
newpoints = simplifyDouglasPeucker(newpoints, sqTolerance: sqTolerance); | |
return newpoints; | |
} | |
func simplifyRadialDistance(points:[Point3D], sqTolerance:Float ) -> [Point3D] { | |
var point:Point3D? = nil; | |
var prevPoint = points[0] | |
var newPoints:[Point3D] = [] | |
newPoints.append(prevPoint) | |
newPoints.append(prevPoint); | |
for var i = 1; i < points.count; ++i { | |
point = points[i]; | |
if (getSquareDistance(point!, p2:prevPoint) > sqTolerance) { | |
newPoints.append(point!); | |
prevPoint = point!; | |
} | |
} | |
if (prevPoint !== point) { | |
newPoints.append(point!); | |
} | |
return newPoints; | |
} | |
func simplifyDouglasPeucker(points:[Point3D], sqTolerance:Float) -> [Point3D] { | |
var bitSet = [Bool](count:points.count, repeatedValue:false) | |
bitSet[0] = true | |
bitSet[points.count - 1] = true | |
var stack:[Range] = [] | |
let initRange = Range(firstVal: 0, lastVal: points.count - 1) | |
stack.append(initRange) | |
while (stack.count != 0) { | |
var range = stack.removeAtIndex(stack.count - 1); | |
var index = -1; | |
var maxSqDist:Float = 0 | |
// find index of point with maximum square distance from first and last point | |
for (var i = range.first + 1; i < range.last; ++i) { | |
var sqDist = getSquareSegmentDistance(points[i], p1: points[range.first], p2: points[range.last]) | |
if (sqDist > maxSqDist) { | |
index = i | |
maxSqDist = sqDist | |
} | |
} | |
if (maxSqDist > sqTolerance) { | |
bitSet[index] = true; | |
stack.append(Range(firstVal:range.first, lastVal:index)); | |
stack.append(Range(firstVal:index, lastVal:range.last)); | |
} | |
} | |
var newPoints:[Point3D] = [] | |
for var index = 0; index < bitSet.count; index++ { | |
if bitSet[index] { | |
newPoints.append(points[index]) | |
} | |
} | |
return newPoints; | |
} | |
func getSquareDistance(p1:Point3D, p2:Point3D) -> Float { | |
let dx = p1.x - p2.x; | |
let dy = p1.y - p2.y; | |
let dz = p1.z - p2.z; | |
return dx * dx + dy * dy + dz * dz; | |
} | |
func getSquareSegmentDistance(p0:Point3D, p1:Point3D, p2:Point3D) -> Float{ | |
var x1 = p1.x; | |
var y1 = p1.y; | |
var z1 = p1.z; | |
let x2 = p2.x; | |
let y2 = p2.y; | |
let z2 = p2.z; | |
let x0 = p0.x; | |
let y0 = p0.y; | |
let z0 = p0.z; | |
var dx = x2 - x1; | |
var dy = y2 - y1; | |
var dz = z2 - z1; | |
if (dx != 0.0 || dy != 0.0 || dz != 0.0) { | |
let numerator = ((x0 - x1) * dx + (y0 - y1) * dy + (z0 - z1) * dz) | |
let denom = (dx * dx + dy * dy + dz * dz) | |
let t = numerator / denom | |
if (t > 1.0) { | |
x1 = x2; | |
y1 = y2; | |
z1 = z2; | |
} else if (t > 0.0) { | |
x1 += dx * t; | |
y1 += dy * t; | |
z1 += dz * t; | |
} | |
} | |
dx = x0 - x1; | |
dy = y0 - y1; | |
dz = z0 - z1; | |
return dx * dx + dy * dy + dz * dz; | |
} | |
class Range{ | |
var first:Int | |
var last:Int | |
init(firstVal:Int, lastVal:Int) { | |
first = firstVal | |
last = lastVal | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment