Created
November 21, 2023 21:34
-
-
Save willtownes/b8e63b36ea27ed82ba6b2251a4bdbe05 to your computer and use it in GitHub Desktop.
Prediction interval for Poisson regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "Poisson prediction interval" | |
author: "Will Townes" | |
output: html_document | |
--- | |
Poisson prediction interval based on [Kim et al 2022](https://doi.org/10.1002/wics.1568) | |
```{r} | |
n<-100 | |
x<-scale(1:n) | |
tot<-ceiling(rlnorm(n,3,.1)) | |
offsets<-log(tot) | |
mu<-exp(offsets-x^2) | |
plot(x,mu) | |
y<-rpois(100,mu) | |
plot(x,y) | |
d<-data.frame(x=x,y=y,tot=tot) | |
fit<-glm(y~poly(x,2),family=poisson,data=d,offset=log(tot)) | |
pred<-predict(fit,type="response",se.fit=TRUE) | |
plot(x,y,main="naive prediction interval") | |
lines(x,pred$fit) | |
lines(x,pred$fit-1.96*pred$se.fit,lty=2) | |
lines(x,pred$fit+1.96*pred$se.fit,lty=2) | |
``` | |
```{r} | |
#gamma1 from Kim et al 2022 | |
sf<-summary(fit) | |
Xo<-model.matrix(fit) | |
lam0<-pred$fit | |
#note: trace(V*xx') is equivalent to x'Vx | |
term1<-apply(Xo,1,function(x){x%*% crossprod(sf$cov.scaled, x)}) | |
#term1<-diag(Xo%*% sf$cov.scaled %*% t(Xo)) #more expensive way to do same thing | |
Vo<- 1+(1)^2*lam0*term1 | |
sqlamV<-sqrt(lam0*Vo) | |
lo<- lam0-1.96*sqlamV | |
hi<- lam0+1.96*sqlamV | |
plot(x,y,main="Gamma 1 prediction interval") | |
lines(x,lam0) | |
lines(x,lo,lty=2) | |
lines(x,hi,lty=2) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment