Last active
February 17, 2022 16:23
-
-
Save willtownes/e642e1830ee1f3740ec3408b22208827 to your computer and use it in GitHub Desktop.
Is LOESS a special case of a Gaussian process?
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(pdist) | |
n<-200 | |
X<-matrix(10*runif(n),ncol=1) | |
y<-sin(X[,1])#+rnorm(n,sd=.2) | |
#plot(X[,1],y) | |
#xnew<-3 | |
#span<-1 | |
my_loess<-function(xnew,X,y,span=.75){ | |
#xnew is a vector with length=ncol(X) | |
#nn=number of nearest neighbors to consider | |
nn=ceiling(length(y)*span) | |
d<-sqrt(colSums((xnew-t(X))^2)) | |
rk<-rank(d,ties.method="random") | |
ii<- rk<=nn | |
d[ii]<-d[ii]/max(d[ii]) | |
w<-0*d | |
w[ii]<-(1-abs(d[ii])^3)^3 | |
X<-cbind(1,X) | |
c(1,xnew)%*%solve(crossprod(X,w*X),crossprod(X,w*y)) | |
} | |
my_loess_vec<-function(Xnew,X,y,span=.75){ | |
apply(Xnew,1,my_loess,X,y,span) | |
} | |
Xnew<-matrix(seq(from=-10,to=20,length.out=100),ncol=1) | |
ynew<-my_loess_vec(Xnew,X,y,span=1) | |
plot(X,y,xlim=c(-5,15)) | |
lines(Xnew,ynew) | |
fit<-loess(y~X,span=1,degree=1) | |
ydefault<-predict(fit,Xnew) | |
lines(Xnew,ydefault,col="red") | |
my_gp<-function(Xnew,X,y){ | |
Xnew<-cbind(1,Xnew) | |
X<-cbind(1,X) | |
D<-as.matrix(dist(X)) | |
M<-max(D) | |
K<-(1-(D/M)^3)^3 | |
Dnew<-as.matrix(pdist(Xnew,X)) | |
Knew<-(1-(Dnew/M)^3)^3 | |
Knew%*%solve(K,y) | |
} | |
ynew2<-my_gp(Xnew,X,y) | |
lines(Xnew,ynew2,col="blue") | |
legend("bottomleft",c("loess_default","loess_custom","GP"),lty=rep(1,3),col=c("black","red","blue")) | |
#possible extension of tricube kernel to real domain | |
tricube<-function(d){ | |
u<-2/(1+exp(-d))-1 #map reals to (-1,1) | |
70/81*(1-abs(u)^3)^3 | |
} | |
curve(tricube,from=-10,to=10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks Will! This is so interesting