Created
May 27, 2019 23:22
-
-
Save willwhitney/c79ee2368210fa360316defe46fec090 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DmMujocoModel(nn.Module): | |
def __init__(self, embed_dim, env_name, traj_len, qpos_only=False, qpos_qvel=False): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.dataset = DmData(env_name, traj_len, qpos_only, qpos_qvel) | |
self.dataset.make_env() | |
self.env = self.dataset.env | |
self.dummy_parameter = nn.Parameter(torch.zeros(1)) | |
def forward(self, s, a): | |
self.env.reset() | |
s, a = s.cpu(), a.cpu() | |
prediction = torch.zeros_like(s) | |
for i, (state, actions) in enumerate(zip(s, a)): | |
with self.env.physics.reset_context(): | |
if self.dataset.qpos_only: | |
self.env.physics.data.qpos[:] = state.numpy() | |
else: | |
qpos_size = state.size(0)//2 | |
self.env.physics.data.qpos[:] = state[:qpos_size].numpy() | |
self.env.physics.data.qvel[:] = state[qpos_size:].numpy() | |
for action in actions: | |
self.env.step(action) | |
prediction[i] = torch.from_numpy(self.dataset.get_obs()) | |
mu = torch.zeros(s.size(1), self.embed_dim).cuda() | |
log_var = torch.zeros(s.size(1), self.embed_dim).cuda() | |
return prediction.float().cuda() + self.dummy_parameter, mu, log_var |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment