Created
January 13, 2021 15:21
-
-
Save wingos80/3b51d2c18808ec9c7c3d582022185053 to your computer and use it in GitHub Desktop.
A mandelbrot set viewer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import pygame as pg | |
# import numpy as np | |
# import math | |
# import timeit | |
# | |
# toc = timeit.default_timer() | |
# | |
# pg.init() | |
# pg.display.set_caption("*basically ksp*") | |
# pg.font.init() | |
# | |
# xmax = 1080 | |
# ymax = 720 | |
# scr = pg.display.set_mode((xmax, ymax)) | |
# | |
# black = (0, 0, 0) | |
# | |
# # arr = pg.surfarray.array3d(scr) | |
# arr2 = np.mgrid[0:1080,0:720] | |
# | |
# | |
# # A = np.zeros((720, 1080)) | |
# C = np.mgrid[0:1080, 0:720] | |
# | |
# # Z is the complex number array | |
# Z = (C[0]-540)/270+(C[1]-360)*1j/180 | |
# | |
# test = 5 | |
# def colour(x): | |
# z = 0+0j | |
# for i in range(6): | |
# z = z*z + x | |
# # test = np.absolute(z) | |
# # if test > 10: | |
# # break | |
# y = np.absolute(z) | |
# # if y > 1: | |
# # # r = min(255, 255 * max(0, 1.5 * (-math.cos(math.pi * y/99999)))) | |
# # # g = min(255, 255 * (1.5 * math.sin(math.pi * y/99999))) | |
# # # b = min(255, 255 * max(0, 1.5 * math.cos(math.pi * y/99999))) | |
# # r = 0 | |
# # g = 0 | |
# # b = min(255, y/9999999999) | |
# if y < 3: | |
# r, g, b = 0, 0, 0 | |
# else: | |
# r, g = 0, 0 | |
# b = 255 | |
# test = 1 | |
# return r, g, b | |
# | |
# | |
# # remember to implement zooming | |
# # for i in range(xmax): | |
# # for j in range(ymax): | |
# # a, b, c = colour(i) | |
# # arr[i][j] = (a, b, c) | |
# | |
# vfunc = np.vectorize(colour) | |
# be = vfunc(Z) | |
# be = np.stack((be[0], be[1], be[2]), axis=-1) | |
# | |
# tic = timeit.default_timer() | |
# # print(np.shape(be)) | |
# # print(be[1079][0]) | |
# print(tic - toc) | |
# print(test) | |
# # new_center = 0 | |
# | |
# # Main Loop!! | |
# running = True | |
# while running: | |
# | |
# pg.surfarray.blit_array(scr, be) | |
# | |
# #quit event | |
# for event in pg.event.get(): | |
# if event.type == pg.MOUSEBUTTONUP: | |
# new_center = pg.mouse.get_pos() | |
# print(new_center) | |
# if event.type == pg.QUIT: | |
# running = False | |
# pg.display.flip() | |
# pg.quit() | |
import pygame as pg | |
import numpy as np | |
import math | |
import timeit | |
toc = timeit.default_timer() | |
pg.init() | |
pg.display.set_caption("Mandelbrot set") | |
pg.font.init() | |
xmax = 1600 | |
ymax = 840 | |
scr = pg.display.set_mode((xmax, ymax)) | |
black = (0, 0, 0) | |
# arr = pg.surfarray.array3d(scr) | |
C = np.mgrid[0:xmax, 0:ymax] | |
empty_arr = np.zeros((xmax, ymax)) | |
itr = 0 | |
def generate_complex_plane(x, y, grid, zoom): | |
return (grid[0]-2*xmax/3)/(zoom*xmax/3)+x+(((grid[1]-ymax/2)/(zoom*ymax/2))-y)*1j | |
def iterator(z_0, c): | |
# the mandelbrot set equation | |
z = z_0 | |
for i in range(8): | |
z = z*z + c | |
# if y > 1: | |
# # r = min(255, 255 * max(0, 1.5 * (-math.cos(math.pi * y/99999)))) | |
# # g = min(255, 255 * (1.5 * math.sin(math.pi * y/99999))) | |
# # b = min(255, 255 * max(0, 1.5 * math.cos(math.pi * y/99999))) | |
# r = 0 | |
# g = 0 | |
# b = min(255, y/9999999999) | |
return z | |
def colour(z, iter): | |
# the mandelbrot set definition (whether the number has or has not exploded, colouring step | |
y = np.absolute(z) | |
if y < 1+1/(zoom*1): | |
iter += 1 | |
return 255, 255, 255, iter | |
else: | |
# r = min(255, 255 * max(0, 1.5 * (-math.cos(math.pi * iter*10)))) | |
# g = min(255, 255 * (1.5 * math.sin(math.pi * iter*10))) | |
# b = min(255, 255 * max(0, 1.5 * math.cos(math.pi * iter/10))) | |
# r, g = min(255, iter*10/(zoom/2.5)), min(255, iter*20/(zoom/2.5)) | |
# b = min(255, iter*30/(zoom/2.5)) | |
# return r, g, b, iter | |
r, g = min(255, iter * 4), min(255, iter * 8) | |
b = min(255, iter * 14) | |
return r, g, b, iter | |
# return 0, 10, 200, iter | |
# else: | |
# return 0, 0, 255 | |
# remember to implement zooming | |
# for i in range(xmax): | |
# for j in range(ymax): | |
# a, b, c = colour(i) | |
# arr[i][j] = (a, b, c) | |
# Z is the complex number array | |
# Z = (C[0]-2*xmax/3)/(xmax/3)+(C[1]-ymax/2)*1j/(ymax/2) | |
center = -1.282, 0.068 | |
zoom = 400 | |
Z = generate_complex_plane(center[0], center[1], C, zoom) | |
vfunc1 = np.vectorize(iterator) | |
vfunc2 = np.vectorize(colour) | |
explody_arr = vfunc1(empty_arr, Z) | |
be = vfunc2(explody_arr, empty_arr) | |
disp_arr = np.stack((be[0], be[1], be[2]), axis=-1) | |
tic = timeit.default_timer() | |
print(tic - toc) | |
# new_center = 0 | |
# Main Loop!! | |
running = True | |
play = 1 | |
while running: | |
# t = timeit.default_timer() | |
# | |
# circle_colour = (min(255, 255 * max(0, 1.5 * (-math.cos(math.pi * t / 5)))), | |
# min(255, 255 * max(0,(1.5 * math.sin(math.pi * t / 5)))), | |
# min(255, 255 * max(0, 1.5 * math.cos(math.pi * t / 5)))) | |
# if play == 1: | |
# explody_arr = vfunc1(explody_arr, Z) | |
# be = vfunc2(explody_arr, be[3]) | |
# # circle_colour = (255, 255, 255) | |
explody_arr = vfunc1(explody_arr, Z) | |
be = vfunc2(explody_arr, be[3]) | |
dis_arr = np.stack((be[0], be[1], be[2]), axis=-1) | |
pg.surfarray.blit_array(scr, dis_arr) | |
# pg.draw.circle(surface=scr, color=circle_colour, center=(2 * xmax / 3, ymax / 2), radius=3) | |
itr += 1 | |
print(itr) | |
# quit event | |
# event = pg.event.wait() | |
# if event.type == pg.KEYDOWN: | |
# if event.type == pg.K_RIGHT: | |
# zoom += 10 | |
# print("ere") | |
# | |
# Z = generate_complex_plane(center[0], center[1], C, zoom) | |
# explody_arr = vfunc1(empty_arr, Z) | |
# be = vfunc2(explody_arr, empty_arr) | |
# disp_arr = np.stack((be[0], be[1], be[2]), axis=-1) | |
# if event.type == pg.K_LEFT: | |
# zoom -= 10 | |
# | |
# Z = generate_complex_plane(center[0], center[1], C, zoom) | |
# explody_arr = vfunc1(empty_arr, Z) | |
# be = vfunc2(explody_arr, empty_arr) | |
# disp_arr = np.stack((be[0], be[1], be[2]), axis=-1) | |
for event in pg.event.get(): | |
if event.type == pg.MOUSEBUTTONUP: | |
new_center = pg.mouse.get_pos() | |
pg.image.save(scr, "test.jpeg") | |
print("heh") | |
# play = play * -1 | |
# center = (new_center[0]-2*xmax/3)/(xmax/3), -(new_center[1]-ymax/2)/(ymax/2) | |
# | |
# Z = generate_complex_plane(center[0], center[1], C, zoom) | |
# explody_arr = vfunc1(empty_arr, Z) | |
# be = vfunc2(explody_arr, empty_arr) | |
# disp_arr = np.stack((be[0], be[1], be[2]), axis=-1) | |
if event.type == pg.QUIT: | |
running = False | |
pg.display.flip() | |
pg.quit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment