Created
June 5, 2024 20:27
-
-
Save wiseodd/146944b12785c54906b6bb7f7fb91b57 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import annotations | |
import warnings | |
warnings.filterwarnings("ignore") | |
import torch | |
from gpytorch.likelihoods import Likelihood | |
from gpytorch.mlls import ExactMarginalLogLikelihood | |
from botorch.models.gp_regression import SingleTaskGP | |
from gpytorch.kernels import Kernel | |
class MLLGP(SingleTaskGP): | |
""" | |
Gaussian Process regressor (following the botorch API) for | |
molecular fingerprint data (e.g. Morgan fingerprints), | |
using the Tanimoto kernel from the gauche library. | |
https://github.com/leojklarner/gauche.git | |
""" | |
def __init__( | |
self, | |
train_X: torch.Tensor, | |
train_Y: torch.Tensor, | |
kernel: Kernel, | |
likelihood: Likelihood | None = None, | |
lr: float = 0.01, | |
n_epochs: int = 500, | |
): | |
SingleTaskGP.__init__( | |
self, | |
train_X=train_X, | |
train_Y=train_Y, | |
likelihood=likelihood, | |
covar_module=kernel, | |
) | |
self.kernel = kernel | |
self.lr = lr | |
self.n_epochs = n_epochs | |
self._train_model() | |
def _train_model(self): | |
""" | |
Implements a simple training procedure for the GP model | |
(exact marginal log likelihood from gpytorch). | |
""" | |
mll = ExactMarginalLogLikelihood(self.likelihood, self) | |
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) | |
self.train() | |
self.likelihood.train() | |
mll.train() | |
for _ in range(self.n_epochs): | |
optimizer.zero_grad() | |
output = self(self.train_inputs[0]) | |
loss = (-mll(output, self.train_targets)).mean() | |
loss.backward() | |
optimizer.step() | |
self.eval() | |
self.likelihood.eval() | |
def condition_on_observations( | |
self, X: torch.Tensor, Y: torch.Tensor, **kwargs | |
) -> MLLGP: | |
""" | |
Returns a new GP conditioned on the provided observations. | |
""" | |
# ATTN: Do we want to use this implementation (i.e. re-training the GP from scratch) or the default | |
# implementation from botorch (i.e. using the fantasy model approach from gpytorch)? | |
train_X = torch.cat([self.train_inputs[0], X]) | |
train_Y = torch.cat([self.train_targets.unsqueeze(-1), Y]) | |
return MLLGP( | |
train_X, train_Y, self.kernel, self.likelihood, self.lr, self.n_epochs | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment