Skip to content

Instantly share code, notes, and snippets.

@wiseodd
Created January 8, 2017 05:48
Show Gist options
  • Save wiseodd/c08d5a2b02b1957a16f886ab7044032d to your computer and use it in GitHub Desktop.
Save wiseodd/c08d5a2b02b1957a16f886ab7044032d to your computer and use it in GitHub Desktop.
Implementation of Finite Difference solution of Laplace Equation in Numpy and Theano
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import time
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_zlim(-1.01, 1.01)
def draw_plot(x, y, U):
ax.clear()
ax.set_zlim(-1.01, 1.01)
ax.plot_surface(x, y, U, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=True)
plt.pause(1e-5)
# Create 21x21 mesh grid
m = 21
mesh_range = np.arange(-1, 1, 2/(m-1))
x, y = np.meshgrid(mesh_range, mesh_range)
# Initial condition
U = np.exp(-5 * (x**2 + y**2))
draw_plot(x, y, U)
n = list(range(1, m-1)) + [m-2]
e = n
s = [0] + list(range(0, m-2))
w = s
def pde_step(U):
""" PDE calculation at a single time step t """
return (U[n, :]+U[:, e]+U[s, :]+U[:, w])/4.
k = 5
U_step = U
for it in range(500):
U_step = pde_step(U_step)
# Every k steps, draw the graphics
if it % k == 0:
draw_plot(x, y, U_step)
while True:
plt.pause(1e-5)
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import time
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import theano as th
from theano import tensor as T
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_zlim(-1.01, 1.01)
def draw_plot(x, y, U):
ax.clear()
ax.set_zlim(-1.01, 1.01)
ax.plot_surface(x, y, U, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=True)
plt.pause(1e-5)
# Create 21x21 mesh grid
m = 21
mesh_range = np.arange(-1, 1, 2/(m-1))
x_arr, y_arr = np.meshgrid(mesh_range, mesh_range)
# Initialize variables
x, y = th.shared(x_arr), th.shared(y_arr)
U = T.exp(-5 * (x**2 + y**2))
draw_plot(x_arr, y_arr, U.eval())
n = list(range(1, m-1)) + [m-2]
e = n
s = [0] + list(range(0, m-2))
w = s
def pde_step(U):
""" PDE calculation at a single time step t """
return (U[n, :]+U[:, e]+U[s, :]+U[:, w])/4.
k = 5
# Batch process the PDE calculation, calculate together k steps
result, updates = th.scan(fn=pde_step, outputs_info=U, n_steps=k)
final_result = result[-1]
calc_pde = th.function(inputs=[U], outputs=final_result, updates=updates)
U_step = U.eval()
for it in range(100):
# Every k steps, draw the graphics
U_step = calc_pde(U_step)
draw_plot(x_arr, y_arr, U_step)
while True:
plt.pause(1e-5)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment