Skip to content

Instantly share code, notes, and snippets.

@wiso
Created May 27, 2015 14:32
Show Gist options
  • Save wiso/1de2fda49c78f58f788b to your computer and use it in GitHub Desktop.
Save wiso/1de2fda49c78f58f788b to your computer and use it in GitHub Desktop.
Propagation of temperature difference
## Propagation of temperature difference
$$E^\text{(corr)}_{\text{year}} = E_{\text{year}} / (1 + \alpha_{\text{year}})$$
we want
$$E^\text{(corr)}_{\text{2012}} = E^\text{(corr)}_{\text{2015}} $$
and we know (temperature effect):
$$E_{2015} = (1 + x) E_{2012}$$
where $x=E_{2015}/E_{2012} - 1$ is your last but one column. Define:
$$\Delta\alpha = \alpha_{2015} - \alpha_{2012}$$
then:
$$ E_{\text{2012}} / (1 + \alpha_{\text{2012}}) = E_{\text{2015}} / (1 + \alpha_{\text{2015}})$$
$$ (1 + \alpha_{\text{2015}}) / (1 + \alpha_{\text{2012}}) = (1+x)$$
$$ (1 + \alpha_{\text{2012}} + \Delta\alpha) = (1+x) (1 + \alpha_{\text{2012}}) = 1 +x + \alpha_{2012} + x\alpha_{2012}$$
$$ \Delta\alpha = x + x\alpha_{2012}\simeq x$$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment