I hereby claim:
- I am wjhopper on github.
- I am whopper (https://keybase.io/whopper) on keybase.
- I have a public key whose fingerprint is B703 3199 97F5 7774 B0C9 4FAC 7048 A20E F958 73DF
To claim this, I am signing this object:
| mask_hypothesize <- new.env() | |
| ## This masks the infer::hypothesize function, and does one extra step of processing before returning the data | |
| ## The response variable is re-centered to have a mean equal to the hypothesized mean | |
| ## Normally the re-centering is postponed till the generate step, but since we're not using generate (it can't take a sample of arbitrary size from an empirical distribution) | |
| ## we've got to do it a little earlier! | |
| mask_hypothesize$hypothesize <- function(...) { | |
| x <- infer::hypothesise(...) | |
| response_var <- as.character(attr(x, "response")) |
| library(rstudio.prefs) | |
| use_rstudio_prefs( | |
| save_workspace = "never", # General --> Basic --> Save Workspace | |
| load_workspace = FALSE, # General --> Basic --> Restore .RData | |
| restore_last_project = FALSE, # General --> Basic --> Restore most recent project | |
| restore_source_documents = FALSE, # General --> Basic --> Restore previously open source documents | |
| check_for_updates = FALSE, # General --> Basic --> Check for updates | |
| if (.Platform$OS.type == "windows") { | |
| folder <- file.path(Sys.getenv("AppData"), "RStudio", "templates") | |
| } else { | |
| folder <- "~/.config/rstudio/templates" | |
| } | |
| if (!dir.exists(folder)) { dir.create(folder, recursive = TRUE) } | |
| f <- file(file.path(folder, "default.Rmd") ,"wt") |
| #! \bin\bash | |
| ## This script is to help clean up the experiment manager backups | |
| cd /media/PatricksHD/CC9_Backups | |
| touch removal_list.txt | |
| # Compressed tarballs of the pydio user data directory are taken twice a day with a cron job | |
| # The filenames follow the naming convention pydio_userdata_backup_YYYY-MM-DD_HH-MM.tar.bz | |
| # Thus, this script assumes that the date of a backup can be extacted by splitting |
| library(pryr) | |
| sample_df <- data.frame(a = 1:5, b = 5:1, c = c(5, 3, 1, 4, 1)) | |
| scramble <- function(x) x[sample(nrow(x)), ] | |
| subset1 <- function(x, cond) { | |
| condition_call <- substitute(cond) | |
| r <- eval(condition_call, x, parent.frame()) | |
| x[r, ] |
| #The task: sum 1000 different 10x10 matrices stored in a list | |
| matrices <- vector(mode="list", length=1000) | |
| for (i in seq_along(matrices)) { | |
| matrices[[i]] <- matrix(rnorm(1000), 10, 10) | |
| } | |
| f1 <- function () { | |
| S <- matrix(0, 10, 10) | |
| for (M in matrices) { |
| library(ggplot2) | |
| library(scales) | |
| library(gridExtra) | |
| set.seed(20) | |
| n <- 10 | |
| y <- rexp(n, 2) | |
| dat <- data.frame( | |
| xval = rep(c("A","B"), n/2), | |
| yval = y, |
I hereby claim:
To claim this, I am signing this object:
| # Create a function programmatically by creating its constituents: | |
| # an argument list, a function body of expressions, and an enclosing environment | |
| args <- alist(x=,y=) | |
| exps <- expression(z <- x^2 + y^2, z <- sqrt(z), return(z)) | |
| body <- as.call(c(as.name("{"), exps)) | |
| f <- as.function(x = c(args,body), envir = parent.frame()) | |
| f(x=1,y=1) |
| %--------------------------------------------------------% | |
| % Onscreen script to record race/ethnic/sex demographics % | |
| % for Matlab % | |
| % Updated 09/21/2015 % | |
| %--------------------------------------------------------% | |
| %{ | |
| Purpose: | |
| A Matlab script which will generate a set of dialog boxes that ask | |
| participants an assortment of questions regarding demographics (in |