Created
October 16, 2022 15:42
-
-
Save wkcn/0d92ff956cf1e09f20da9709f9578f9b to your computer and use it in GitHub Desktop.
measure FP8 speed
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import transformer_engine.pytorch as te | |
from transformer_engine.common.recipe import Format, DelayedScaling | |
import transformer_engine_extensions as tex | |
import copy | |
import math | |
from typing import Callable, Optional | |
def speedometer( | |
module: torch.nn.Module, | |
input: torch.Tensor, | |
output_grad: torch.Tensor, | |
timing_iters: int = 50, | |
warmup_iters: int = 50, | |
) -> None: | |
"""Measure average run time for a PyTorch module | |
Performs forward and backward passes. | |
""" | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
# Warmup runs | |
torch.cuda.synchronize() | |
for _ in range(warmup_iters): | |
output = module(input) | |
output.backward(output_grad) | |
# Timing runs | |
start.record() | |
for _ in range(timing_iters): | |
output = module(input) | |
output.backward(output_grad) | |
end.record() | |
torch.cuda.synchronize() | |
print(f"Mean time: {start.elapsed_time(end)/timing_iters} ms") | |
dim = 1024 | |
print("DIM:", dim) | |
m = te.Linear(dim, dim) | |
m.cuda() | |
x = torch.rand(dim, dim, device='cuda') | |
y = m(x) | |
dy = y | |
m1, m2 = [copy.deepcopy(m) for _ in range(2)] | |
x1, x2 = [x.clone() for _ in range(2)] | |
dy1, dy2 = [dy.clone() for _ in range(2)] | |
print("FP16:") | |
with torch.cuda.amp.autocast(): | |
speedometer(m1, x1, dy1) | |
fp8_format = Format.HYBRID | |
fp8_recipe = DelayedScaling(fp8_format=fp8_format, amax_history_len=16, amax_compute_algo="max") | |
print("FP8:") | |
with torch.cuda.amp.autocast(): | |
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe): | |
speedometer(m2, x2, dy2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment