Created
April 28, 2023 08:24
-
-
Save wkcn/580a2579db0b111323a3e2deaa63137e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import torch | |
from torch.nn import LayerNorm | |
from megatron.enums import AttnMaskType | |
from megatron.model.fused_layer_norm import MixedFusedLayerNorm | |
from megatron.model.fused_softmax import FusedScaleMaskSoftmax | |
from megatron.model.utils import attention_mask_func | |
from megatron.global_vars import _parse_args | |
def test_load_fused_kernels(): | |
try: | |
import fused_mix_prec_layer_norm_cuda | |
import scaled_masked_softmax_cuda | |
import scaled_upper_triang_masked_softmax_cuda | |
import torch | |
print("[Success] load_fused_kernels") | |
except ImportError as e: | |
print("[Fail] load_fused_kernels") | |
raise e | |
def test_fused_softmax(): | |
bert = BertModel.from_pretrained("bert-base-cased").cuda().half() | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
test_text = ( | |
"Hello. How are you? I am fine thank you and you? yes Good. " | |
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32 | |
) | |
tokens = tokenizer( | |
[test_text] * 4, | |
return_tensors="pt", | |
) | |
embedding_output = bert.embeddings( | |
input_ids=tokens["input_ids"].cuda(), | |
position_ids=None, | |
token_type_ids=tokens["token_type_ids"].cuda(), | |
inputs_embeds=None, | |
past_key_values_length=0, | |
) | |
# (bsz, 1, 1, seq_len) | |
mask = bert.get_extended_attention_mask( | |
attention_mask=tokens["attention_mask"].cuda(), | |
input_shape=tokens["input_ids"].shape, | |
device=bert.device, | |
) | |
# (bsz, 1, seq_len, seq_len) | |
mask = mask.repeat(1, 1, mask.size()[-1], 1) | |
attention = bert.encoder.layer[0].attention.self | |
key_layer = attention.transpose_for_scores(attention.key(embedding_output)) | |
query_layer = attention.transpose_for_scores(attention.query(embedding_output)) | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores /= math.sqrt(key_layer.size()[-1]) | |
fused_softmax = ( | |
FusedScaleMaskSoftmax( | |
input_in_fp16=True, | |
input_in_bf16=False, | |
mask_func=attention_mask_func, | |
scale=None, | |
softmax_in_fp32=False, | |
attn_mask_type=AttnMaskType.padding, | |
scaled_masked_softmax_fusion=True, | |
) | |
.cuda() | |
.half() | |
) | |
fused_softmax_output = fused_softmax( | |
attention_scores, | |
(mask != 0), | |
) | |
torch_softmax = ( | |
FusedScaleMaskSoftmax( | |
input_in_fp16=True, | |
input_in_bf16=False, | |
mask_func=attention_mask_func, | |
scale=None, | |
softmax_in_fp32=False, | |
attn_mask_type=AttnMaskType.padding, | |
scaled_masked_softmax_fusion=False, | |
) | |
.cuda() | |
.half() | |
) | |
torch_softmax_output = torch_softmax( | |
attention_scores, | |
(mask != 0), | |
) | |
test_result = (fused_softmax_output - torch_softmax_output).abs() | |
while test_result.dim() != 1: | |
test_result = test_result.mean(dim=-1) | |
diff = test_result.mean(dim=-1) | |
if diff <= 1e-3: | |
print( | |
f"\n[Success] test_fused_softmax" | |
f"\n > mean_difference={diff}" | |
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}" | |
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | |
) | |
else: | |
print( | |
f"\n[Fail] test_fused_softmax" | |
f"\n > mean_difference={diff}, " | |
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, " | |
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | |
) | |
def test_fused_upper_triangle_mask_softmax(): | |
gpt = GPT2Model.from_pretrained("gpt2").cuda().half() | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
test_text = ( | |
"Hello. How are you? I am fine thank you and you? yes Good. " | |
"hi hi hi hi hi hi hi" # 24 | |
) | |
tokens = tokenizer( | |
[test_text] * 4, | |
return_tensors="pt", | |
) | |
attention_mask = tokens["attention_mask"].cuda() | |
attention_mask = attention_mask.view(attention_mask.size(0), -1) | |
attention_mask = attention_mask[:, None, None, :] | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
attention_mask = attention_mask.repeat(1, 1, attention_mask.size()[-1], 1) | |
attn = gpt.h[0] | |
hidden_states = gpt.wte(tokens["input_ids"].cuda()) | |
q, k, v = attn.attn.c_attn(hidden_states).split(768, dim=-1) | |
q = attn.attn._split_heads(q, attn.attn.num_heads, attn.attn.head_dim) | |
k = attn.attn._split_heads(k, attn.attn.num_heads, attn.attn.head_dim) | |
attn_weights = torch.matmul(q, k.transpose(-1, -2)) | |
sq, sk = q.size(-2), k.size(-2) | |
causal_mask = attn.attn.bias[:, :, sk - sq : sk, :sk].bool() | |
total_mask = ~(causal_mask & (attention_mask == 0)) | |
""" | |
tensor([[[[False, True, True, ..., True, True, True], | |
[False, False, True, ..., True, True, True], | |
[False, False, False, ..., True, True, True], | |
..., | |
[False, False, False, ..., False, True, True], | |
[False, False, False, ..., False, False, True], | |
[False, False, False, ..., False, False, False]]] | |
""" | |
fused_softmax = ( | |
FusedScaleMaskSoftmax( | |
input_in_fp16=True, | |
input_in_bf16=False, | |
mask_func=attention_mask_func, | |
scale=None, | |
softmax_in_fp32=False, | |
attn_mask_type=AttnMaskType.causal, | |
scaled_masked_softmax_fusion=True, | |
) | |
.cuda() | |
.half() | |
) | |
fused_softmax_output = fused_softmax( | |
attn_weights, | |
total_mask, | |
) | |
torch_softmax = ( | |
FusedScaleMaskSoftmax( | |
input_in_fp16=True, | |
input_in_bf16=False, | |
mask_func=attention_mask_func, | |
scale=None, | |
softmax_in_fp32=False, | |
attn_mask_type=AttnMaskType.causal, | |
scaled_masked_softmax_fusion=False, | |
) | |
.cuda() | |
.half() | |
) | |
torch_softmax_output = torch_softmax( | |
attn_weights, | |
total_mask, | |
) | |
test_result = (fused_softmax_output - torch_softmax_output).abs() | |
while test_result.dim() != 1: | |
test_result = test_result.mean(dim=-1) | |
diff = test_result.mean(dim=-1) | |
if diff <= 1e-3: | |
print( | |
f"\n[Success] test_fused_upper_triangle_mask_softmax" | |
f"\n > mean_difference={diff}" | |
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}" | |
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | |
) | |
else: | |
print( | |
f"\n[Fail] test_fused_upper_triangle_mask_softmax" | |
f"\n > mean_difference={diff}, " | |
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, " | |
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | |
) | |
def test_layer_norm(): | |
bert = BertModel.from_pretrained("bert-base-cased").cuda().half() | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
test_text = ( | |
"Hello. How are you? I am fine thank you and you? yes Good. " | |
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32 | |
) | |
tokens = tokenizer( | |
[test_text] * 4, | |
return_tensors="pt", | |
) | |
# [bsz, seq_len, d_model] | |
embedding_output = ( | |
bert.embeddings( | |
input_ids=tokens["input_ids"].cuda(), | |
position_ids=None, | |
token_type_ids=tokens["token_type_ids"].cuda(), | |
inputs_embeds=None, | |
past_key_values_length=0, | |
) | |
.cuda() | |
.half() | |
) | |
fused_layernorm_layer = ( | |
MixedFusedLayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half() | |
) | |
torch_layernorm_layer = ( | |
LayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half() | |
) | |
fused_output = fused_layernorm_layer(embedding_output) | |
torch_output = torch_layernorm_layer(embedding_output) | |
test_result = (fused_output - torch_output).abs() | |
while test_result.dim() != 1: | |
test_result = test_result.mean(dim=-1) | |
diff = test_result.mean(dim=-1) | |
if diff <= 1e-3: | |
print( | |
f"\n[Success] test_layer_norm" | |
f"\n > mean_difference={diff}" | |
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}" | |
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}" | |
) | |
else: | |
print( | |
f"\n[Fail] test_layer_norm" | |
f"\n > mean_difference={diff}, " | |
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}, " | |
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}" | |
) | |
if __name__ == "__main__": | |
try: | |
from transformers import BertTokenizer, GPT2Tokenizer | |
from transformers.models.bert.modeling_bert import BertModel | |
from transformers.models.gpt2.modeling_gpt2 import GPT2Model | |
import transformers | |
transformers.logging.set_verbosity( | |
transformers.logging.FATAL, | |
) | |
except: | |
print("\n[Fail] Please install `transformers` package to test fused kernels\n") | |
exit(-1) | |
_parse_args() | |
test_load_fused_kernels() | |
test_fused_softmax() | |
test_fused_upper_triangle_mask_softmax() | |
test_layer_norm() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment