Created
March 9, 2018 07:43
-
-
Save wkcn/8015feae59a63956884d1ef8b9fbb743 to your computer and use it in GitHub Desktop.
Multi-Proposal Operator Test (cpu implementation) for MXNet
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
from mxnet import nd | |
import numpy as np | |
feature_stride = 16 | |
scales = (8, 16, 32) | |
ratios = (0.5, 1, 2) | |
rpn_pre_nms_top_n = 12000 | |
rpn_post_nms_top_n = 2000 | |
threshold = 0.7 | |
rpn_min_size = 16 | |
batch_size = 20 | |
feat_len = 14 | |
H, W = feat_len, feat_len | |
num_anchors = len(scales) * len(ratios) | |
count_anchors = feat_len * feat_len * num_anchors | |
''' | |
cls_prob: (batch_size, 2 * num_anchors, H, W) | |
bbox_pred: (batch_size, 4 * num_anchors, H, W) | |
im_info: (batch_size, 3) | |
''' | |
cls_prob = nd.empty((batch_size, 2 * num_anchors, H, W), dtype = np.float32) | |
bbox_pred = nd.empty((batch_size, 4 * num_anchors, H, W), dtype = np.float32) | |
im_info = nd.empty((batch_size, 3), dtype = np.float32) | |
cls_prob = nd.array(np.random.random(cls_prob.shape)) | |
bbox_pred = nd.array(np.random.random(bbox_pred.shape)) | |
for i in range(batch_size): | |
im_size = np.random.randint(100, feat_len * feature_stride, size = (2,)) | |
im_scale = np.random.randint(70, 100) / 100.0 | |
im_info[i, :] = [im_size[0], im_size[1], im_scale] | |
def get_sub(arr, i): | |
new_shape = list(arr.shape) | |
new_shape[0] = 1 | |
res = arr[i].reshape(new_shape) | |
return res | |
def test(rpn_pre_nms_top_n, rpn_post_nms_top_n): | |
single_proposal = [] | |
single_score = [] | |
for i in range(batch_size): | |
rois, score = mx.nd.contrib.Proposal( | |
cls_score = get_sub(cls_prob, i), | |
bbox_pred = get_sub(bbox_pred, i), | |
im_info = get_sub(im_info, i), | |
feature_stride = feature_stride, | |
scales = scales, | |
ratios = ratios, | |
rpn_pre_nms_top_n = rpn_pre_nms_top_n, | |
rpn_post_nms_top_n = rpn_post_nms_top_n, | |
threshold = threshold, | |
rpn_min_size = rpn_min_size, output_score = True) | |
single_proposal.append(rois) | |
single_score.append(score) | |
multi_proposal, multi_score = mx.nd.contrib.MultiProposal( | |
cls_score = cls_prob, | |
bbox_pred = bbox_pred, | |
im_info = im_info, | |
feature_stride = feature_stride, | |
scales = scales, | |
ratios = ratios, | |
rpn_pre_nms_top_n = rpn_pre_nms_top_n, | |
rpn_post_nms_top_n = rpn_post_nms_top_n, | |
threshold = threshold, | |
rpn_min_size = rpn_min_size, output_score = True) | |
single_proposal = nd.stack(*single_proposal).reshape(multi_proposal.shape) | |
single_score = nd.stack(*single_score).reshape(multi_score.shape) | |
single_proposal_np = single_proposal.asnumpy() | |
multi_proposal_np = multi_proposal.asnumpy() | |
single_score_np = single_score.asnumpy() | |
multi_score_np = multi_score.asnumpy() | |
print (multi_proposal_np.shape) | |
# test rois x1,y1,x2,y2 | |
assert np.allclose(single_proposal_np[:, 1:], multi_proposal_np[:, 1:]) | |
# test rois batch_idx | |
for i in range(batch_size): | |
start = i * rpn_post_nms_top_n | |
end = start + rpn_post_nms_top_n | |
assert (multi_proposal_np[start:end, 0] == i).all() | |
# test score | |
assert np.allclose(single_score_np, multi_score_np) | |
test(rpn_pre_nms_top_n, rpn_post_nms_top_n) | |
test(rpn_pre_nms_top_n, 1500) | |
test(1000, 500) | |
print ("test ok") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment