Last active
March 28, 2024 09:11
-
-
Save wllhf/a4533e0adebe57e3ed06d4b50c8419ae to your computer and use it in GitHub Desktop.
Python implementation of the color map function for the PASCAL VOC data set.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Python implementation of the color map function for the PASCAL VOC data set. | |
Official Matlab version can be found in the PASCAL VOC devkit | |
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit | |
""" | |
import numpy as np | |
from skimage.io import imshow | |
import matplotlib.pyplot as plt | |
def color_map(N=256, normalized=False): | |
def bitget(byteval, idx): | |
return ((byteval & (1 << idx)) != 0) | |
dtype = 'float32' if normalized else 'uint8' | |
cmap = np.zeros((N, 3), dtype=dtype) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << 7-j) | |
g = g | (bitget(c, 1) << 7-j) | |
b = b | (bitget(c, 2) << 7-j) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
cmap = cmap/255 if normalized else cmap | |
return cmap | |
def color_map_viz(): | |
labels = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'void'] | |
nclasses = 21 | |
row_size = 50 | |
col_size = 500 | |
cmap = color_map() | |
array = np.empty((row_size*(nclasses+1), col_size, cmap.shape[1]), dtype=cmap.dtype) | |
for i in range(nclasses): | |
array[i*row_size:i*row_size+row_size, :] = cmap[i] | |
array[nclasses*row_size:nclasses*row_size+row_size, :] = cmap[-1] | |
imshow(array) | |
plt.yticks([row_size*i+row_size/2 for i in range(nclasses+1)], labels) | |
plt.xticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks, here is some code to visualize blended image and corresponding segmentation mask:
output: