Created
April 25, 2017 15:11
-
-
Save wmalarski/34f63e710cdb26f42dc6d632a3021295 to your computer and use it in GitHub Desktop.
MIO Lab5. Simulated Annealing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
t = np.loadtxt('f2.txt') | |
def random_result(dim): | |
res = np.zeros(t.size, dtype=np.int8) | |
y = np.random.randint(0, dim[0], dim[1]) | |
x = np.arange(0, dim[1], dtype=np.int8) | |
res2 = res.reshape(dim) | |
res2[y, x] = 1 | |
return res2 | |
def wage(res): | |
return np.max(np.sum(t * res, 1)) | |
def mutate(res): | |
new = res.copy() | |
np.random.shuffle(new[:, np.random.randint(0, res.shape[1])]) | |
return new | |
def start_temperature(res, prob): | |
sum_wage = 0.0 | |
res_wage = wage(res) | |
ind = 0 | |
while ind < 10: | |
mod_wage = wage(mutate(res)) | |
if mod_wage > res_wage: | |
sum_wage += (res_wage - mod_wage) | |
ind += 1 | |
return (sum_wage/10.)/np.log(prob) | |
def next_temperature(step, start): | |
return start/(step + 1) | |
def simulated_annealing(plot, temp_prob): | |
result = random_result(t.shape) | |
result_wage = wage(result) | |
max_iteration = 1000 | |
start_temp = start_temperature(result, temp_prob) | |
iteration_array = np.arange(max_iteration) | |
temperature_array = np.zeros(max_iteration) | |
result_wage_array = np.zeros(max_iteration) | |
for i in range(0, max_iteration): | |
temperature = next_temperature(i, start_temp) | |
new = mutate(result) | |
new_wage = wage(new) | |
delta = new_wage - result_wage | |
if delta < 0: | |
result = new | |
result_wage = new_wage | |
elif np.random.sample() < np.exp(-delta / temperature): | |
result = new | |
result_wage = new_wage | |
temperature_array[i] = temperature | |
result_wage_array[i] = result_wage | |
if plot: | |
plt.subplot(2, 1, 1) | |
plt.plot(iteration_array, result_wage_array) | |
plt.subplot(2, 1, 2) | |
plt.plot(iteration_array, temperature_array) | |
plt.show() | |
return result_wage | |
if __name__ == "__main__": | |
print simulated_annealing(True, 0.8) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment