Skip to content

Instantly share code, notes, and snippets.

View wmalarski's full-sized avatar

Wojtek Malarski wmalarski

View GitHub Profile
@wmalarski
wmalarski / e03.py
Last active March 21, 2017 11:33
Python lab2
from __future__ import division
import random
l = [0, 1, 2]
def generate_choice():
choice = random.choice(l)
cross = random.choice(l)
show = random.choice(list(set(l) - {choice, cross}))
@wmalarski
wmalarski / e03b.py
Created March 21, 2017 20:37
VPython Lab3 Exercise3
from __future__ import division
import math
def func(x):
return 50 * math.sin(x)
x_args = [(2 * x * math.pi)/50 for x in range(51)]
y_args = [func(x) for x in x_args]
y_min, y_max = min(y_args), max(y_args)
@wmalarski
wmalarski / e02.m
Created March 25, 2017 20:48
MIO Lab2. E2
clc; clear;
%% train
data_train = load('Lab2_training.txt');
x_train = data_train(:, 1:4)';
y_train = data_train(:, 5:7)';
%% test
data_test = load('Lab2_testing.txt');
x_test = data_test(:, 1:4)';
y_test = data_test(:, 5:7)';
@wmalarski
wmalarski / e04.py
Last active April 4, 2017 22:57
VPython Lab4 Exercise 1
from __future__ import division
import numpy as np
import math
n = 100000
def probability(dim):
sums = (np.random.uniform(-1, 1, (n, dim)) ** 2).sum(axis=1)
return ((sums < 1).real.sum() / n) * (2.0 ** dim)
@wmalarski
wmalarski / e05.py
Created April 25, 2017 15:11
MIO Lab5. Simulated Annealing
import numpy as np
import matplotlib.pyplot as plt
t = np.loadtxt('f2.txt')
def random_result(dim):
res = np.zeros(t.size, dtype=np.int8)
y = np.random.randint(0, dim[0], dim[1])
x = np.arange(0, dim[1], dtype=np.int8)
@wmalarski
wmalarski / e06.py
Created April 25, 2017 18:33
VPython Lab6. Fractal
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
if __name__ == "__main__":
n = 10**6
x_pos = np.zeros(n)
y_pos = np.zeros(n)
@wmalarski
wmalarski / da.py
Last active April 27, 2017 20:09
MIO Project1. Dragonfly Algorithm
import numpy as np
import matplotlib.pyplot as plt
_gamma1d25 = 1.1330030963193471
_gamma2d5 = 3.323350970447843
_beta = 1.5
_l = (_gamma2d5 * np.sin(np.pi * _beta / 2.0))
_m = _gamma1d25 * _beta * pow(2.0, (_beta - 1.0) / 2.0)
_omega = np.power(_l / _m, 1 / _beta)
@wmalarski
wmalarski / e09.py
Created May 22, 2017 10:07
VPython Lab9.
from __future__ import division
from visual import *
import numpy as np
radS = 0.4
radH = 0.4
length = 100.
k = 0.5
dt = 0.1
n_balls = 52
@wmalarski
wmalarski / TTblock.py
Last active March 7, 2020 00:33
Blokada troll kont
from __future__ import division
import tweepy
import configparser
config = configparser.ConfigParser()
config.read('config.ini')
access_token_secret = config['TWEEPY']['access_token_secret']
consumer_secret = config['TWEEPY']['consumer_secret']
consumer_key = config['TWEEPY']['consumer_key']
from collections import defaultdict
class Context(object):
def __init__(self):
self._classes = {}
self._instances = {}
def feature(self, component_cls):