Created
March 15, 2017 01:33
Revisions
-
wmayner created this gist
Mar 15, 2017 .There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,125 @@ import json import os import pickle import random from time import time import numpy as np import pyphi from pyphi import Network, Subsystem from pyphi.compute.big_phi import (big_mip_bipartitions, evaluate_cut, _null_bigmip, _find_mip_sequential) # Setup # ~~~~~ pyphi.config.CACHE_BIGMIPS = False pyphi.config.PARALLEL_CUT_EVALUATION = False N = 5 ITERATIONS = 10 filename = 'test-data-{}-nodes.pkl'.format(N) if os.path.exists(filename): print('Loading random networks, subsystems, and ' 'their unpartitioned constellations... ', end='', flush=True) with open(filename, 'rb') as f: rand_nets, rand_subs, unpartitioned_constellations = pickle.load(f) print('done.', flush=True) else: print('Making random networks and subsystems... ', end='', flush=True) tpms = [np.random.randint(2, size=[2]*N + [N]) for i in range(ITERATIONS)] cms = [np.random.randint(2, size=[N, N]) for i in range(ITERATIONS)] print('done.', flush=True) def get_rand_sub(net): while True: try: state = np.random.randint(2, size=N) return Subsystem(net, state, range(N)) except pyphi.exceptions.StateUnreachableError: pass rand_nets = [Network(tpms[i], connectivity_matrix=cms[i]) for i in range(ITERATIONS)] rand_subs = [get_rand_sub(rand_nets[i]) for i in range(ITERATIONS)] unpartitioned_constellations = [] for i in range(ITERATIONS): print('Precomputing unpartitioned constellations... ' '{} / {}'.format(i, ITERATIONS), end='\r', flush=True) unpartitioned_constellations.append( pyphi.compute.constellation(rand_subs[i]) ) print('\rPrecomputing unpartitioned constellations... done.') print('\nSaving test data... ', end='') test_data = (rand_nets, rand_subs, unpartitioned_constellations) with open(filename, 'wb') as f: pickle.dump(test_data, f) print('done.', flush=True) cuts = big_mip_bipartitions(range(N)) def mean_time(func, *args): start = time() for i in range(ITERATIONS): print('{}: {} / {}'.format(func.__name__, i, ITERATIONS), end='\r') func(i, *args) end = time() result = round((end - start) / ITERATIONS, 4) print('{}: done. '.format(func.__name__)) print(' Mean time: {}s'.format(result)) return result # Test functions # ~~~~~~~~~~~~~~ def big_mip(i): subsystem = rand_subs[i] pyphi.compute.big_mip(subsystem) def naive_big_mip(i): subsystem = rand_subs[i] unpartitioned_constellation = pyphi.compute.constellation(subsystem) min_mip = _null_bigmip(subsystem) min_mip.phi = float('inf') _find_mip_sequential(subsystem, cuts, unpartitioned_constellation, min_mip) def unpartitioned_constellation(i): subsystem = rand_subs[i] unpartitioned_constellation = pyphi.compute.constellation(subsystem) evaluate_cut(subsystem, random.choice(cuts), unpartitioned_constellation) def random_cut(i): subsystem = rand_subs[i] unpartitioned_constellation = unpartitioned_constellations[i] evaluate_cut(subsystem, random.choice(cuts), unpartitioned_constellation) print('\nTiming functions ({} nodes, {} iterations)'.format(N, ITERATIONS)) print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') results = {'nodes': N} results.update({ func.__name__: mean_time(func) for func in [big_mip, naive_big_mip, unpartitioned_constellation, random_cut] }) with open('results-{}-nodes.json'.format(N), 'wt') as f: json.dump(results, f)