Last active
April 5, 2021 02:02
-
-
Save wmlba/ed6448da9dce3a3c0f6ee78e972dd07b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential, Model | |
from keras.layers import Dense, Input | |
from keras import optimizers | |
from keras.optimizers import Adam | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
train_x = x_train.reshape(60000, 784) / 255 | |
val_x = x_test.reshape(10000, 784) / 255 | |
autoencoder = Sequential() | |
autoencoder.add(Dense(512, activation='elu', input_shape=(784,))) | |
autoencoder.add(Dense(128, activation='elu')) | |
autoencoder.add(Dense(10, activation='linear', name="bottleneck")) | |
autoencoder.add(Dense(128, activation='elu')) | |
autoencoder.add(Dense(512, activation='elu')) | |
autoencoder.add(Dense(784, activation='sigmoid')) | |
autoencoder.compile(loss='mean_squared_error', optimizer = Adam()) | |
trained_model = autoencoder.fit(train_x, train_x, batch_size=1024, epochs=10, verbose=1, validation_data=(val_x, val_x)) | |
encoder = Model(autoencoder.input, autoencoder.get_layer('bottleneck').output) | |
encoded_data = encoder.predict(train_x) # bottleneck representation | |
decoded_output = autoencoder.predict(train_x) # reconstruction | |
encoding_dim = 10 | |
# return the decoder | |
encoded_input = Input(shape=(encoding_dim,)) | |
decoder = autoencoder.layers[-3](encoded_input) | |
decoder = autoencoder.layers[-2](decoder) | |
decoder = autoencoder.layers[-1](decoder) | |
decoder = Model(encoded_input, decoder) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment