Created
August 12, 2015 15:41
-
-
Save wmvanvliet/6d7c78ea329d4e9e1217 to your computer and use it in GitHub Desktop.
Demonstration of the new outline='skirt' functionality
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Python | |
| import mne | |
| import numpy as np | |
| from matplotlib import pyplot as plt | |
| # Channel positions | |
| ch_names = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'A11', 'A12', 'A13', 'A14', 'A15', 'A16', 'A17', 'A18', 'A19', 'A20', 'A21', 'A22', 'A23', 'A24', 'A25', 'A26', 'A27', 'A28', 'A29', 'A30', 'A31', 'A32', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12', 'B13', 'B14', 'B15', 'B16', 'B17', 'B18', 'B19', 'B20', 'B21', 'B22', 'B23', 'B24', 'B25', 'B26', 'B27', 'B28', 'B29', 'B30', 'B31', 'B32', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19', 'C20', 'C21', 'C22', 'C23', 'C24', 'C25', 'C26', 'C27', 'C28', 'C29', 'C30', 'C31', 'C32', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15', 'D16', 'D17', 'D18', 'D19', 'D20', 'D21', 'D22', 'D23', 'D24', 'D25', 'D26', 'D27', 'D28', 'D29', 'D30', 'D31', 'D32'] | |
| montage = mne.channels.read_montage('biosemi128') | |
| info = mne.create_info(ch_names, 100, 'eeg', montage) | |
| # EEG data | |
| temp = [-0.00054827592108, 0.031668073094, 0.0704223162929, 0.0865540229014, 0.085150043403, 0.0457380793299, 0.0509495732895, 0.0987022550764, 0.0801886633895, 0.04976969651, 0.00614093831533, -0.0373887332355, -0.0197260623702, -0.000444422313751, 0.0248963507643, 0.0589171499815, 0.0717817674042, 0.0787944587508, 0.130753138626, 0.124899705387, 0.0975269669664, 0.0419575393272, -0.00793216362559, -0.0151265531253, -0.0348081764706, 0.0215552729428, 0.0249141780785, 0.0655540808354, 0.108124467678, 0.124820721722, 0.146384148659, 0.140718598747, 0.0199164974076, 0.0571570915027, 0.0876578355539, 0.0923016839654, 0.133136594185, 0.152798531971, 0.122602552914, 0.0714821347463, 0.0537612111322, 0.0469385417282, 0.0740553145655, 0.0915974711193, 0.0743604227044, 0.0110220331254, 0.0234080078001, 0.0325478142343, 0.0477724066775, 0.047792830146, 0.0666905921563, 0.0189050684572, 0.00897804762235, 0.0227890832216, 0.0197423673457, -0.00454527858583, -0.00615177981404, -0.0201675075456, -0.0920040702005, -0.0464443873328, -0.0414552367577, -0.0531930278853, -0.0307912429832, -0.0412551750461, -0.0123007168696, -0.0112167955503, -0.0542948025463, -0.0857190408132, -0.0771482839, -0.113035664, -0.124491501499, -0.122871051658, -0.10429939481, -0.0749259731853, -0.0494703403965, -0.0760484386394, -0.0866986470174, -0.108261995558, -0.103236351804, -0.0826894600891, -0.114552515316, -0.0938510344287, -0.0872763177219, -0.0658120109097, -0.109361027459, -0.0545709142688, -0.0465159668016, -0.0374219872666, -0.0657419626256, -0.0692102438198, -0.0685479219719, -0.0770634783383, -0.0872426401117, -0.0666948763193, -0.0573920809363, -0.0800195158044, -0.0249282154474, -0.0257314683258, -0.0342883027284, -0.0602967350127, -0.0379301562186, -0.0422883555211, -0.0357673248702, -0.00463023885605, -0.0154207203639, -0.0236424654065, -0.00446259655858, 0.00180786601789, -0.000400985259411, 0.000962388449819, 0.0113404811841, 0.0430510059066, 0.0267019564535, -0.00120974681118, 0.00317540453295, 0.00662862089829, -0.0460368212177, -0.0417816042596, 0.00620115910578, -0.0218318617073, -0.0349000304808, -0.0231747760115, 0.0320176071901, 0.00236553571098, 0.0207500486866, 0.0235998503673, -0.00664424438941, -0.0175665711621] | |
| evoked = mne.EvokedArray(np.atleast_2d(temp).T, info, 0) | |
| l = mne.channels.make_eeg_layout(info) | |
| # Make topomap plots | |
| plt.figure() | |
| ax1 = plt.subplot(1, 3, 1) | |
| evoked.plot_topomap(0, axes=ax1, contours=None, colorbar=False) | |
| plt.title('default') | |
| ax2 = plt.subplot(1, 3, 2) | |
| evoked.plot_topomap(0, axes=ax2, contours=None, colorbar=False, outlines='skirt') | |
| plt.title('with skirt') | |
| ax3 = plt.subplot(1, 3, 3) | |
| evoked.plot_topomap(0, axes=ax3, contours=None, colorbar=False, outlines='skirt', | |
| head_pos={'center': [0, 0], 'scale': [0.31, 0.312]}) | |
| #head_pos={'center': [0.495, 0.53], 'scale': [1.05, 1.175]}) | |
| plt.title('skirt and\naccurate headsize') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment