Created
February 28, 2017 20:58
-
-
Save wojteklu/d19456a77e25dfa65b588793cbf628aa to your computer and use it in GitHub Desktop.
Multinomial naive Bayes classifier
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package bayes | |
// Classifier implements the Naive Bayes Classifier. | |
type Classifier struct { | |
classPerWordCount map[string]int | |
classPerDocument map[string]int | |
wordClassCount map[string]map[string]int | |
documentsCount int | |
} | |
// Train the classifier with text and its class. | |
func (c *Classifier) Train(words []string, class string) { | |
c.documentsCount++ | |
c.incrementDocumentPerClass(class) | |
for _, word := range words { | |
c.incrementWordClass(word, class) | |
c.incrementClassPerWord(class) | |
} | |
} | |
// Classify the given text. | |
func (c *Classifier) Classify(words []string) (string, float64) { | |
var score float64 | |
var prediction string | |
for _, class := range c.classes() { | |
var probability = c.probability(words, class) | |
if score < probability { | |
score = probability | |
prediction = class | |
} | |
} | |
return prediction, score | |
} | |
// counting | |
func (c *Classifier) incrementWordClass(word string, class string) { | |
if c.wordClassCount == nil { | |
c.wordClassCount = make(map[string]map[string]int) | |
} | |
if c.wordClassCount[word] == nil { | |
c.wordClassCount[word] = make(map[string]int) | |
} | |
c.wordClassCount[word][class]++ | |
} | |
func (c *Classifier) incrementDocumentPerClass(class string) { | |
if c.classPerDocument == nil { | |
c.classPerDocument = make(map[string]int) | |
} | |
c.classPerDocument[class]++ | |
} | |
func (c *Classifier) incrementClassPerWord(class string) { | |
if c.classPerWordCount == nil { | |
c.classPerWordCount = make(map[string]int) | |
} | |
c.classPerWordCount[class]++ | |
} | |
// probabilites | |
func (c *Classifier) classProbability(class string) float64 { | |
return float64(c.classPerDocument[class]) / float64(c.documentsCount) | |
} | |
func (c *Classifier) wordGivenClassProbability(word string, class string) float64 { | |
return float64(c.wordClassCount[word][class]+1) / float64(c.classPerWordCount[class]+c.vocabularySize()) | |
} | |
func (c *Classifier) probability(words []string, class string) float64 { | |
var result = c.classProbability(class) | |
for _, word := range words { | |
result *= c.wordGivenClassProbability(word, class) | |
} | |
return result | |
} | |
// helpers | |
func (c *Classifier) classes() []string { | |
classes := make([]string, len(c.classPerDocument)) | |
i := 0 | |
for c := range c.classPerDocument { | |
classes[i] = c | |
i++ | |
} | |
return classes | |
} | |
func (c *Classifier) vocabularySize() int { | |
return len(c.wordClassCount) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"./bayes" | |
) | |
func main() { | |
var classifier bayes.Classifier | |
classifier.Train([]string{"cat", "meow", "cat"}, "cat") | |
classifier.Train([]string{"purr", "cat", "cat"}, "cat") | |
classifier.Train([]string{"cat", "whisker", "meow"}, "cat") | |
classifier.Train([]string{"dog", "bark", "cat"}, "dog") | |
class, score := classifier.Classify([]string{"cat", "cat", "cat", "dog", "bark"}) | |
fmt.Println(class, score) // => cat 0.0002133333333333334 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Спасибо