Skip to content

Instantly share code, notes, and snippets.

@wolfecameron
Last active July 12, 2024 15:42
Show Gist options
  • Save wolfecameron/d6ad12f6c663c73f80258fa988e465b2 to your computer and use it in GitHub Desktop.
Save wolfecameron/d6ad12f6c663c73f80258fa988e465b2 to your computer and use it in GitHub Desktop.
Basic PyTorch implementation of masked self-attention with a single attention head.
"""
Source: https://github.com/karpathy/nanoGPT/blob/master/model.py
"""
import math
import torch
from torch import nn
import torch.nn.functional as F
class MaskedSelfAttention(nn.Module):
def __init__(
self,
d,
T,
bias=False,
dropout=0.2,
):
"""
Arguments:
d: size of embedding dimension
T: maximum length of input sequences (in tokens)
bias: whether or not to use bias in linear layers
dropout: probability of dropout
"""
super().__init__()
self.d = d
# key, query, value projections for all heads, but in a batch
# output is 3X the dimension because it includes key, query and value
self.c_attn = nn.Linear(d, 3*d, bias=bias)
# causal mask to ensure that attention is only applied to
# the left in the input sequence
self.register_buffer("mask", torch.tril(torch.ones(T, T))
.view(1, 1, T, T))
def forward(self, x):
B, T, _ = x.size() # batch size, sequence length, embedding dimensionality
# compute query, key, and value vectors for all heads in batch
# split the output into separate query, key, and value tensors
q, k, v = self.c_attn(x).split(self.d, dim=2) # [B, T, d]
# compute the attention matrix, perform masking, and apply dropout
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # [B, T, T]
att = att.masked_fill(self.bias[:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
# compute output vectors for each token
y = att @ v # [B, T, d]
return y
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment