Skip to content

Instantly share code, notes, and snippets.

@wotori
Last active November 16, 2018 16:52
Show Gist options
  • Save wotori/9b99312c6975cd691f62991931c9cc41 to your computer and use it in GitHub Desktop.
Save wotori/9b99312c6975cd691f62991931c9cc41 to your computer and use it in GitHub Desktop.
Working Keras with random generated data
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
# Generate dummy data
x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment