Created
May 23, 2018 08:27
-
-
Save wuyongzheng/a7004c1c233c3e61b03af1a87816bea4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Usage: python3 p5-bayes.py z4-mark z4-noma | |
import sys | |
import numpy as np | |
import scipy.stats | |
def load_data(path): | |
nr_fields = None | |
ids = list() | |
vecs = list() | |
with open(path) as fp: | |
for line in fp: | |
fields = line.strip().split() | |
fields = [fields[0]] + [int(x) for x in fields[1:]] | |
if nr_fields: | |
assert nr_fields == len(fields) | |
else: | |
nr_fields = len(fields) | |
ids.append(fields[0]) | |
vec = fields[1:3] + fields[4:] | |
for (a,b) in [(2,3),(3,6),(6,5),(7,6),(8,6),(9,6),(10,9),(11,9),(12,6),(13,12),(14,12),(15,12),(16,12),(17,16),(18,16),(19,16),(10,16)]: | |
vec.append(fields[a-1]/(fields[b-1]+0.001)) | |
vecs.append(tuple(vec)) | |
return ids, vecs | |
def normalize(vecs): | |
# ret[sample_idx, feature_idx] | |
ret = np.array(vecs) | |
idx = np.argsort(ret, axis=0) | |
ret = np.zeros(ret.shape) | |
for (x,y), val in np.ndenumerate(idx): | |
ret[val, y] = x/float(ret.shape[0]) | |
return ret | |
def main(): | |
id_mark, vec_mark = load_data(sys.argv[1]) | |
id_noma, vec_noma = load_data(sys.argv[2]) | |
vec_norm = normalize(vec_mark + vec_noma) | |
print("mark=%d, nomark=%d, features=%d, shape=%s" % (len(id_mark), len(id_noma), len(vec_mark[0]), str(vec_norm.shape))) | |
stat_mark = list() | |
for i in range(len(vec_mark[0])): | |
sum0 = 0 | |
sum1 = 0.0 | |
sum2 = 0.0 | |
for j in range(len(vec_mark)): | |
sum0 += 1 | |
sum1 += vec_norm[j, i] | |
sum2 += vec_norm[j, i] * vec_norm[j, i] | |
stat_mark.append((sum1/sum0, np.sqrt(sum2/sum0 - sum1*sum1/sum0/sum0))) | |
stat_all = list() | |
for i in range(len(vec_mark[0])): | |
sum0 = 0 | |
sum1 = 0.0 | |
sum2 = 0.0 | |
for j in range(vec_norm.shape[0]): | |
sum0 += 1 | |
sum1 += vec_norm[j, i] | |
sum2 += vec_norm[j, i] * vec_norm[j, i] | |
stat_all.append((sum1/sum0, np.sqrt(sum2/sum0 - sum1*sum1/sum0/sum0))) | |
for i in range(len(vec_mark[0])): | |
print("%2d %f %f %f %f" % (i, stat_mark[i][0], stat_mark[i][1], stat_all[i][0], stat_all[i][1])) | |
for i in range(vec_norm.shape[0]): | |
bid = id_mark[i] if i < len(id_mark) else id_noma[i-len(id_mark)] | |
p = 0.0 | |
for j in range(len(vec_mark[0])): | |
p1 = abs(vec_norm[i, j] - stat_mark[j][0]) / stat_mark[j][1] | |
p1 = scipy.stats.norm.cdf(-p1) * 2 | |
if p1 < 0.000001: p1 = 0.000001 # prevent log error | |
p += np.log(p1) | |
print("%s\t%f" % (bid, p)) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment