Last active
March 8, 2024 18:45
-
-
Save wviechtb/891483eea79da21d057e60fd1e28856b to your computer and use it in GitHub Desktop.
Model Selection using the glmulti and MuMIn Packages with a rma.mv() Model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
############################################################################ | |
library(metafor) | |
library(ape) | |
############################################################################ | |
# read the documentation for this dataset | |
help(dat.moura2021) | |
# get the data and the tree | |
dat <- dat.moura2021$dat | |
tree <- dat.moura2021$tree | |
# calculate r-to-z transformed correlations and corresponding sampling variances | |
dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) | |
# make the tree ultrametric and compute the phylogenetic correlation matrix | |
tree <- compute.brlen(tree) | |
A <- vcv(tree, corr=TRUE) | |
# make a copy of the species.id variable | |
dat$species.id.phy <- dat$species.id | |
# fit the full model (multilevel phylogenetic meta-analytic model) | |
full <- rma.mv(yi, vi, mods = ~ spatially.pooled * temporally.pooled, | |
random = list(~ 1 | study.id, ~ 1 | effect.size.id, | |
~ 1 | species.id, ~ 1 | species.id.phy), | |
R=list(species.id.phy=A), data=dat, method="ML") | |
full | |
############################################################################ | |
# model selection using glmulti | |
library(glmulti) | |
rma.glmulti <- function(formula, data, ...) { | |
rma.mv(formula, vi, | |
random = list(~ 1 | study.id, ~ 1 | effect.size.id, | |
~ 1 | species.id, ~ 1 | species.id.phy), | |
R=list(species.id.phy=A), data=data, method="ML", ...) | |
} | |
# fit all possible models; since level=2, the two-way interaction between the | |
# two predictors is also considered; and by setting marginality=TRUE the model | |
# with the interaction must include the two main effects; this leads to a | |
# total of 5 possible models | |
system.time(res1 <- glmulti(yi ~ spatially.pooled + temporally.pooled, data=dat, | |
level=2, marginality=TRUE, fitfunction=rma.glmulti, | |
crit="aicc", confsetsize=5, plotty=FALSE)) | |
# short output | |
print(res1) | |
# table with the information criteria for each model | |
weightable(res1) | |
# multimodel inference | |
eval(metafor:::.glmulti) | |
round(coef(res1, varweighting="Johnson"), 4) | |
# process the output into a more familiar form | |
mmi <- as.data.frame(coef(res1, varweighting="Johnson")) | |
mmi <- data.frame(Estimate=mmi$Est, SE=sqrt(mmi$Uncond), | |
Importance=mmi$Importance, row.names=row.names(mmi)) | |
mmi$z <- mmi$Estimate / mmi$SE | |
mmi$p <- 2*pnorm(abs(mmi$z), lower.tail=FALSE) | |
names(mmi) <- c("Estimate", "Std. Error", "Importance", "z value", "Pr(>|z|)") | |
mmi$ci.lb <- mmi[[1]] - qnorm(.975) * mmi[[2]] | |
mmi$ci.ub <- mmi[[1]] + qnorm(.975) * mmi[[2]] | |
mmi <- mmi[order(mmi$Importance, decreasing=TRUE), c(1,2,4:7,3)] | |
round(mmi, 4) | |
############################################################################ | |
# model selection using MuMIn | |
library(MuMIn) | |
eval(metafor:::.MuMIn) | |
# fit all possible models | |
system.time(res2 <- dredge(full, trace=2)) | |
res2 | |
# multimodel inference | |
summary(model.avg(res2)) | |
# for easier comparison with the results from glmulti | |
round(mmi[colnames(model.avg(res2)$coefficients),], 4) | |
############################################################################ | |
# MuMIn with parallel processing | |
library(parallel) | |
clust <- makeCluster(2, type="PSOCK") | |
clusterExport(clust, c("dat","A")) | |
clusterEvalQ(clust, library(metafor)) | |
system.time(res3 <- dredge(full, trace=2, cluster=clust)) | |
res3 | |
stopCluster(clust) | |
############################################################################ |
Not sure if/when I will get to this. In most cases, the random effects structure is something that is determined by the data structure and the dependencies that need to be handled/accounted for. In most cases, I would not recommend making any changes to that anyway once the structure has been chosen.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi Wolfgang,
Thank you very much for providing this useful and excellent example. I really learn a lot from your open science practices (e.g., sharing code, showing examples). I just have a request - If your time permits, I would be grateful if you would like to show an example of using model selection to select random-effects structure in the context of multivariate/multilevel models (definitely by rma.mv()). The random-effects structure is really worth noting when conducting a meta-analysis. Many papers have touched upon this topic, like
Barr D J, Levy R, Scheepers C, et al. Random effects structure for confirmatory hypothesis testing: Keep it maximal[J]. Journal of memory and language, 2013, 68(3): 255-278.
Bates D, Kliegl R, Vasishth S, et al. Parsimonious mixed models[J]. arXiv preprint arXiv:1506.04967, 2015.
Matuschek H, Kliegl R, Vasishth S, et al. Balancing Type I error and power in linear mixed models[J]. Journal of memory and language, 2017, 94: 305-315.
But we know a little in the context of the meta-analytic models. I am very curious about your answers and your practices to deal with random-effects structure when conducting a (complex) meta-analysis.
Best,
Yefeng Yang PhD
Research Associate
University of New South Wales - Australia
Biological, Earth & Environmental Science