Skip to content

Instantly share code, notes, and snippets.

@wyattowalsh
Last active March 13, 2025 12:01
Show Gist options
  • Save wyattowalsh/af15a9b8b6b3bbb63cf7e2db1b00eda1 to your computer and use it in GitHub Desktop.
Save wyattowalsh/af15a9b8b6b3bbb63cf7e2db1b00eda1 to your computer and use it in GitHub Desktop.
{
"$schema": "https://raw.githubusercontent.com/jsonresume/resume-schema/v1.0.0/schema.json",
"basics": {
"name": "Wyatt Walsh",
"label": "Data Integrations Software Engineer | AI, Data, Software, & Optimization | JPMorgan Chase & Co.",
"image": "https://i.ibb.co/FLtKMt6p/avatar-min.webp",
"email": "[email protected]",
"phone": "(209) 602-2545",
"url": "https://www.w4w.dev",
"summary": "Accomplished Senior Software Engineer and data engineering specialist bridging advanced operations research with AI-driven optimization strategies. Drawing on extensive experience at JPMorgan Chase & Co., I architect compliance-centric, real-time data infrastructures that empower critical enterprise decision-making. Skilled in synthesizing theoretical constructs into robust, high-availability software pipelines, I have led cross-functional teams, implemented fault-tolerant frameworks, and championed leading-edge AI solutions. My enduring commitment to research-driven innovation and stringent regulatory adherence enables the creation of sustainable, high-impact technologies.",
"location": {
"address": "New York City, NY, USA",
"postalCode": "11101",
"city": "New York City",
"countryCode": "US",
"region": "New York"
},
"profiles": [
{
"network": "LinkedIn",
"username": "wyattowalsh",
"url": "https://linkedin.com/in/wyattowalsh"
},
{
"network": "X (Twitter)",
"username": "wyattowalsh",
"url": "https://x.com/wyattowalsh"
},
{
"network": "GitHub",
"username": "wyattowalsh",
"url": "https://github.com/wyattowalsh"
},
{
"network": "Website",
"username": "w4w.dev",
"url": "https://www.w4w.dev"
}
]
},
"work": [
{
"name": "JPMorgan Chase & Co.",
"position": "Associate III, Senior Software Engineer",
"startDate": "2023-05",
"summary": "Provides strategic leadership within Commercial & Investment Banking (CIB) credit technology, orchestrating fault-tolerant, high-throughput data pipelines that disseminate mission-critical market intelligence to traders, quantitative analysts, and risk teams.",
"highlights": [
"Architected real-time data ingestion pipelines with AWS, Apache Kafka, and Amazon S3, significantly enhancing data availability and reducing operational latency",
"Optimized database schema designs and SQL-based solutions, bolstering query performance and simplifying downstream data migrations",
"Engineered a machine-learning–driven anomaly detection framework for ingestion volumes, facilitating automated alerts and minimizing production downtime",
"Coordinated cross-functional collaboration among quantitative researchers, bankers, and global technology teams, ensuring continuous alignment with evolving regulatory standards",
"Promoted institutional AI adoption by delivering advanced training sessions for ~100 personnel, focusing on specialized VS Code configurations, prompt engineering, and AI automation strategies",
"Developed specialized data extraction utilities leveraging Python, Pandas, SQLAlchemy, KDB+, and Oracle SQL, expediting retrieval of complex financial PDF data"
],
"url": "https://www.jpmorganchase.com/",
"location": "New York City, NY, USA"
},
{
"name": "Stealth Web3 Startup",
"position": "Senior Software Engineer",
"startDate": "2022-03",
"endDate": "2022-07",
"summary": "Oversaw front-end engineering for a DeFi NFT DAO platform supporting NFT-collateralized cryptocurrency loans, facilitating a high-performance interface for intricate blockchain transactions.",
"highlights": [
"Architected React/Next.js applications integrating Redux, TypeScript, and SCSS, thereby improving DeFi transaction throughput and user experience",
"Adopted agile development methodologies (Jira, Notion), enabling rapid feature iteration in a highly dynamic startup environment",
"Instituted a test-driven development workflow with Cypress, Jest, and StorybookJS, enhancing code reliability and mitigating regressions",
"Employed ethers.js for secure blockchain interactions, ensuring streamlined DeFi smart contract operations",
"Mentored two junior developers, accelerating technical growth and advancing project deliverables"
],
"url": "",
"location": "Remote"
},
{
"name": "SandLabs",
"position": "Chief Technology Officer",
"startDate": "2021-06",
"endDate": "2022-03",
"summary": "Founded and directed the technical vision for a Web3 enterprise focusing on decentralized data solutions, overseeing product development lifecycles and integrating conventional content ecosystems with blockchain-based architectures.",
"highlights": [
"Secured $75K in Web3 grant funding from Ocean Protocol to advance a large-scale Reddit Web3 data scraping initiative",
"Designed and led the development of a comprehensive Next.js platform (TypeScript), featuring a landing page, blog, and integrated content portal",
"Forged strategic alliances with Duke University co-founders and prominent Web3 influencers, elevating project visibility",
"Oversaw multi-million-post data scraping in Python, configured Solidity smart contracts, and implemented React TypeScript solutions"
],
"url": "https://www.linkedin.com/company/sandlabsdata/",
"location": "Remote"
},
{
"name": "Gap Inc.",
"position": "Demand Forecasting",
"startDate": "2020-01",
"endDate": "2020-05",
"summary": "Propelled data science initiatives to modernize Gap Inc.’s demand forecasting methodologies, elevating inventory precision and fortifying supply chain optimization across multiple retail segments.",
"highlights": [
"Refined forecasting accuracy through advanced data science models, substantially reducing potential inventory holding costs across five Gap Inc. divisions",
"Delivered data-driven insights to senior executives, guiding strategic supply chain realignments and fostering cross-departmental collaboration",
"Managed over five years of time-series data (~10TB) in MySQL and Apache Spark, supporting scalable forecasts for 50,000+ SKUs"
],
"url": "https://www.gapinc.com/",
"location": "San Francisco, CA, USA"
},
{
"name": "University of California, Berkeley",
"position": "Course Staff – Data 8: Foundations of Data Science",
"startDate": "2019-01",
"endDate": "2019-12",
"summary": "Executed core instructional duties for UC Berkeley’s largest data science course, translating advanced theoretical frameworks into accessible content for a diverse undergraduate audience.",
"highlights": [
"Taught 1,600+ students in foundational statistics, programming, and data analysis, consistently receiving superior evaluations",
"Led over 75 interactive lectures and labs on Python and introductory statistics, enhancing student comprehension",
"Coordinated critical course logistics (office hours, proctoring, grading), ensuring operational continuity for a large-scale academic program"
],
"url": "https://data.berkeley.edu/education/courses/data-8",
"location": "Berkeley, CA, USA"
}
],
"education": [
{
"institution": "UC Berkeley College of Engineering",
"area": "Industrial Engineering and Operations Research",
"studyType": "Bachelor of Science",
"startDate": "2014-08",
"endDate": "2021-12",
"score": "",
"courses": [
"CIVENG 11 - Engineered Systems and Sustainability",
"INDENG 169 - Integer Optimization",
"INDENG 173 - Introduction to Stochastic Processes",
"INDENG 153 - Logistics Network Design and Supply Chain Management",
"Math 54 - Linear Algebra and Differential Equations",
"Data 8 - Foundations of Data Science",
"Chem 1A - General Chemistry",
"Stat 20 - Introduction to Probability and Statistics",
"UGBA 152 - Negotiation and Conflict Resolution",
"INDENG 162 - Linear Programming and Network Flows",
"INDENG 166 - Decision Analytics",
"INDENG 165 - Engineering Statistics, Quality Control, and Forecasting",
"UGBA 105 - Leading People",
"Engin 7 - Introduction to Computer Programming for Scientists and Engineers",
"CS 61B - Data Structures and Programming Methodology",
"INDENG 142 - Introduction to Machine Learning and Data Analytics",
"INDENG 170 - Industrial Design and Human Factors",
"Math 53 - Multivariable Calculus",
"UGBA 101A - Microeconomic Analysis for Business Decisions",
"Math 1A/1B - Calculus"
],
"url": "https://ieor.berkeley.edu/undergraduate-resources/bachelor-of-science-b-s-industrial-engineering-operations-research/"
},
{
"institution": "The Hotchkiss School",
"area": "College Preparatory Education",
"studyType": "High School Diploma",
"startDate": "2012-12",
"endDate": "2014-12",
"score": "",
"courses": [],
"url": "https://hotchkiss.org/"
}
],
"awards": [
{
"title": "Eagle Scout",
"date": "2011-10",
"awarder": "Boy Scouts of America",
"summary": "Attained the highest rank in the BSA, showcasing leadership, project oversight, and community service. Led construction of a quarter-mile nature trail, completing over 200 volunteer hours."
}
],
"certificates": [
{
"name": "AWS Certified Cloud Practitioner",
"issuer": "Amazon Web Services (AWS)",
"date": "2024-11",
"url": "https://www.credly.com/badges/085279f9-3b10-4dbe-9bfa-3669dcdd3779/public_url"
},
{
"name": "IBM Data Science Professional Certificate",
"issuer": "IBM",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/specialization/certificate/Z4Y8HHXREH65"
},
{
"name": "Machine Learning with Python",
"issuer": "Coursera",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/certificate/7T6T27APMABD"
},
{
"name": "Python for Data Science and AI",
"issuer": "Coursera",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/certificate/QQVENTSY2BX3"
},
{
"name": "Databases and SQL for Data Science",
"issuer": "Coursera",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/certificate/EXDWQMTF6GQV"
},
{
"name": "Tools for Data Science",
"issuer": "Coursera",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/certificate/Q8PG5MFR93NA"
},
{
"name": "Getting Started with AWS Machine Learning",
"issuer": "Coursera",
"date": "2021-02",
"url": "https://www.coursera.org/account/accomplishments/certificate/8QX3HEXSU428"
}
],
"publications": [
{
"name": "Basics of Linear Regression Modeling and Ordinary Least Squares (OLS)",
"publisher": "Towards Data Science",
"releaseDate": "2021-01",
"url": "https://medium.com/towards-data-science/regularized-linear-regression-models-57bbdce90a8c",
"summary": "Part one of a three-part linear regression series, elucidating OLS estimators, model assumptions, and inferential statistics, supplemented by rigorous mathematical proofs and Python demonstrations."
},
{
"name": "Using Ridge Regression to Overcome Drawbacks of Ordinary Least Squares (OLS)",
"publisher": "Towards Data Science",
"releaseDate": "2021-01",
"url": "https://medium.com/towards-data-science/regularized-linear-regression-models-44572e79a1b5",
"summary": "Part two of the series, examining L2 regularization (Ridge) to address overfitting and multicollinearity, with in-depth analysis of the geometry and efficacy of Ridge estimators."
},
{
"name": "Implementing Pairwise Coordinate Descent For The Lasso and The Elastic Net In Python Using NumPy",
"publisher": "Towards Data Science",
"releaseDate": "2021-01",
"url": "https://medium.com/towards-data-science/regularized-linear-regression-models-dcf5aa662ab9",
"summary": "The concluding installment detailing a pairwise coordinate descent approach for Lasso and Elastic Net, offering step-by-step derivations and Python implementations aligned with scikit-learn standards."
}
],
"skills": [
{
"name": "Software Engineering",
"keywords": [
"Python",
"TypeScript",
"JavaScript",
"Java",
"C++",
"Rust",
"Go",
"Ruby",
"Git",
"GitHub Actions",
"Pytest",
"Jest",
"Cypress",
"ESLint",
"Black",
"Ruff",
"Mypy",
"Vim",
"VS Code",
"Design Patterns",
"Clean Code",
"TDD",
"Agile",
"CI/CD",
"Microservices",
"Scrum"
]
},
{
"name": "Python",
"keywords": [
"Software Engineering",
"Machine Learning",
"Data Engineering",
"Statistical Analysis",
"Operations Research",
"DevOps & CI/CD",
"Flask",
"Django",
"FastAPI",
"Kedro",
"dagster",
"dbt",
"PySpark",
"TensorFlow",
"PyTorch",
"Scikit-learn",
"XGBoost",
"LightGBM",
"CatBoost",
"Fast.ai",
"Keras",
"Hugging Face Transformers",
"OpenAI API",
"NLTK",
"spaCy",
"Gensim",
"Matplotlib",
"Plotly",
"Seaborn",
"Dash",
"Bokeh",
"pandas",
"NumPy",
"Statsmodels",
"SciPy",
"PyMC",
"JAX",
"NumPyro",
"Optuna",
"Hyperopt",
"Ruff",
"Mypy",
"Black",
"Pytest",
"Requests",
"Scrapy",
"BeautifulSoup",
"Selenium",
"MechanicalSoup",
"Spotipy",
"PyAutoGUI",
"pyppeteer",
"PRAW",
"Cython",
"Poetry",
"Anaconda",
"Time Series Analysis",
"Algorithmic Trading",
"Risk Management",
"Quantitative Finance Engineering"
]
},
{
"name": "TypeScript",
"keywords": [
"Software Engineering",
"JavaScript",
"Node.js",
"Express.js",
"NestJS",
"tRPC",
"GraphQL",
"Prisma",
"TypeORM",
"Puppeteer",
"Crawlee",
"Apify",
"ScrapingBee",
"ScraperAPI",
"Playwright",
"Socket.io",
"WebSockets",
"WebRTC",
"D3.js",
"Vega-Lite",
"Chart.js",
"Observable",
"Highcharts",
"REST",
"API Gateway",
"JWT",
"OAuth",
"Swagger/OpenAPI",
"Next.js",
"React",
"Redux",
"DevOps & CI/CD"
]
},
{
"name": "JavaScript",
"keywords": [
"Software Engineering",
"Node.js",
"Express.js",
"GraphQL",
"Socket.io",
"WebSockets",
"WebRTC",
"Puppeteer",
"D3.js",
"Chart.js",
"Observable",
"Highcharts",
"Crawlee",
"Apify",
"ScrapingBee",
"ScraperAPI",
"Frontend Development",
"Vanilla JS",
"API Development",
"DevOps & CI/CD",
"REST"
]
},
{
"name": "Java",
"keywords": [
"Software Engineering",
"OptaPlanner",
"Spring Boot",
"Microservices",
"JVM",
"Operations Research"
]
},
{
"name": "C++",
"keywords": [
"Software Engineering",
"Systems Programming",
"High-Performance Computing",
"Embedded Systems",
"Memory Management"
]
},
{
"name": "Rust",
"keywords": [
"Software Engineering",
"Memory Safety",
"Systems Programming",
"Foundry",
"Blockchain & Web3",
"Concurrency"
]
},
{
"name": "Go",
"keywords": [
"Software Engineering",
"Concurrency",
"Microservices",
"API Development",
"DevOps & CI/CD"
]
},
{
"name": "Ruby",
"keywords": [
"Software Engineering",
"Rails",
"Backend Development",
"Web Development"
]
},
{
"name": "Git",
"keywords": [
"Software Engineering",
"Version Control",
"Collaboration",
"Branching Strategies",
"Continuous Integration"
]
},
{
"name": "GitHub Actions",
"keywords": [
"Software Engineering",
"DevOps & CI/CD",
"Continuous Integration",
"Automation",
"Workflow Orchestration"
]
},
{
"name": "Pytest",
"keywords": [
"Software Engineering",
"Python",
"Testing",
"CI/CD",
"Automation"
]
},
{
"name": "Jest",
"keywords": [
"Software Engineering",
"JavaScript",
"TypeScript",
"Testing",
"CI/CD"
]
},
{
"name": "Cypress",
"keywords": [
"Software Engineering",
"JavaScript",
"TypeScript",
"E2E Testing",
"CI/CD"
]
},
{
"name": "ESLint",
"keywords": [
"Software Engineering",
"JavaScript",
"TypeScript",
"Linting",
"Code Quality"
]
},
{
"name": "Black",
"keywords": [
"Software Engineering",
"Python",
"Code Formatting",
"Linting",
"Code Quality"
]
},
{
"name": "Ruff",
"keywords": [
"Software Engineering",
"Python",
"Linting",
"Code Quality"
]
},
{
"name": "Mypy",
"keywords": [
"Software Engineering",
"Python",
"Static Type Checking",
"Code Quality"
]
},
{
"name": "VS Code",
"keywords": [
"Software Engineering",
"IDE",
"Extensions",
"Debugging",
"Productivity"
]
},
{
"name": "Design Patterns",
"keywords": [
"Software Engineering",
"Clean Code",
"Refactoring",
"SOLID",
"Reusable Code"
]
},
{
"name": "Clean Code",
"keywords": [
"Software Engineering",
"Best Practices",
"Readability",
"Maintainability",
"Refactoring"
]
},
{
"name": "TDD",
"keywords": [
"Software Engineering",
"Agile",
"Testing",
"Refactoring",
"Pytest",
"Jest",
"Cypress"
]
},
{
"name": "Artificial Intelligence",
"keywords": [
"LangChain",
"LlamaIndex",
"LangGraph",
"OpenAI API",
"Anthropic Claude API",
"Hugging Face Transformers",
"BERT",
"GPT",
"T5",
"Weaviate",
"Pinecone",
"Chroma",
"Sentence Transformers",
"ONNX",
"RAG",
"Fine-tuning",
"Prompt Engineering",
"Zero-shot Learning",
"AI & Cognitive Systems",
"Machine Learning"
]
},
{
"name": "LangChain",
"keywords": [
"Artificial Intelligence",
"Python",
"Large Language Models",
"Prompt Engineering"
]
},
{
"name": "LlamaIndex",
"keywords": [
"Artificial Intelligence",
"Python",
"Large Language Models",
"Retrieval"
]
},
{
"name": "LangGraph",
"keywords": [
"Artificial Intelligence",
"Python",
"Graph-based NLP",
"Prompt Engineering"
]
},
{
"name": "OpenAI API",
"keywords": [
"Artificial Intelligence",
"Python",
"Large Language Models",
"Generative AI"
]
},
{
"name": "Anthropic Claude API",
"keywords": [
"Artificial Intelligence",
"Prompt Engineering",
"Generative AI"
]
},
{
"name": "Hugging Face Transformers",
"keywords": [
"Artificial Intelligence",
"Python",
"NLP",
"Machine Learning"
]
},
{
"name": "BERT",
"keywords": [
"Artificial Intelligence",
"NLP",
"Transformer Architecture"
]
},
{
"name": "GPT",
"keywords": [
"Artificial Intelligence",
"NLP",
"Transformer Architecture"
]
},
{
"name": "T5",
"keywords": [
"Artificial Intelligence",
"NLP",
"Transformer Architecture"
]
},
{
"name": "Weaviate",
"keywords": [
"Artificial Intelligence",
"Database Systems",
"Vector Search",
"Semantic Search"
]
},
{
"name": "Pinecone",
"keywords": [
"Artificial Intelligence",
"Vector Database",
"Semantic Search"
]
},
{
"name": "Chroma",
"keywords": [
"Artificial Intelligence",
"Python",
"Vector Databases",
"Semantic Search"
]
},
{
"name": "Sentence Transformers",
"keywords": [
"Artificial Intelligence",
"NLP",
"Embedding Models"
]
},
{
"name": "ONNX",
"keywords": [
"Artificial Intelligence",
"Model Interoperability",
"Machine Learning"
]
},
{
"name": "RAG",
"keywords": [
"Artificial Intelligence",
"Retrieval-Augmented Generation",
"Prompt Engineering"
]
},
{
"name": "Fine-tuning",
"keywords": [
"Artificial Intelligence",
"Machine Learning",
"Transfer Learning"
]
},
{
"name": "Prompt Engineering",
"keywords": [
"Artificial Intelligence",
"NLP",
"Generative AI",
"LangChain"
]
},
{
"name": "Zero-shot Learning",
"keywords": [
"Artificial Intelligence",
"NLP",
"Machine Learning"
]
},
{
"name": "Machine Learning",
"keywords": [
"TensorFlow",
"PyTorch",
"Scikit-learn",
"XGBoost",
"LightGBM",
"CatBoost",
"Fast.ai",
"Keras",
"MLflow",
"Weights & Biases",
"Optuna",
"Hyperopt",
"DVC",
"H2O",
"Prophet",
"Neural Prophet",
"PyCaret",
"Artificial Intelligence",
"Statistical Analysis",
"Time Series Forecasting",
"Algorithmic Trading"
]
},
{
"name": "TensorFlow",
"keywords": [
"Machine Learning",
"Python",
"Deep Learning",
"Neural Networks"
]
},
{
"name": "PyTorch",
"keywords": [
"Machine Learning",
"Python",
"Deep Learning",
"Neural Networks"
]
},
{
"name": "Scikit-learn",
"keywords": [
"Machine Learning",
"Python",
"Data Preprocessing",
"Classification",
"Regression"
]
},
{
"name": "XGBoost",
"keywords": [
"Machine Learning",
"Python",
"Gradient Boosting",
"Time Series Forecasting"
]
},
{
"name": "LightGBM",
"keywords": [
"Machine Learning",
"Python",
"Gradient Boosting",
"Tabular Data"
]
},
{
"name": "CatBoost",
"keywords": [
"Machine Learning",
"Python",
"Gradient Boosting",
"Tabular Data"
]
},
{
"name": "Fast.ai",
"keywords": [
"Machine Learning",
"Python",
"Deep Learning",
"Course Framework"
]
},
{
"name": "Keras",
"keywords": [
"Machine Learning",
"Python",
"Neural Networks",
"High-level API"
]
},
{
"name": "MLflow",
"keywords": [
"Machine Learning",
"Python",
"Model Tracking",
"Experiment Management"
]
},
{
"name": "Weights & Biases",
"keywords": [
"Machine Learning",
"Python",
"Experiment Tracking",
"Hyperparameter Tuning"
]
},
{
"name": "Optuna",
"keywords": [
"Machine Learning",
"Python",
"Hyperparameter Optimization",
"Automation"
]
},
{
"name": "Hyperopt",
"keywords": [
"Machine Learning",
"Python",
"Hyperparameter Optimization",
"Bayesian Search"
]
},
{
"name": "DVC",
"keywords": [
"Machine Learning",
"Python",
"Data Version Control",
"Model Reproducibility"
]
},
{
"name": "H2O",
"keywords": [
"Machine Learning",
"Python",
"AutoML",
"Ensemble Methods"
]
},
{
"name": "Prophet",
"keywords": [
"Machine Learning",
"Python",
"Time Series",
"Forecasting"
]
},
{
"name": "Neural Prophet",
"keywords": [
"Machine Learning",
"Python",
"Time Series",
"Neural Networks"
]
},
{
"name": "PyCaret",
"keywords": [
"Machine Learning",
"Python",
"Low-code ML",
"AutoML"
]
},
{
"name": "Natural Language Processing",
"keywords": [
"spaCy",
"NLTK",
"Gensim",
"Tokenizers",
"Word2Vec",
"GloVe",
"Sentence-BERT",
"HuggingFace Datasets",
"BERTopic",
"Haystack",
"KeyBERT",
"Top2Vec",
"LexNLP",
"FastText",
"Flair",
"StanfordNLP",
"AllenNLP",
"Stanza",
"AI & Cognitive Systems",
"Transformers",
"Semantic Search"
]
},
{
"name": "spaCy",
"keywords": [
"Natural Language Processing",
"Python",
"Text Processing",
"NER"
]
},
{
"name": "NLTK",
"keywords": [
"Natural Language Processing",
"Python",
"Tokenization",
"Stemming",
"Lemmatization"
]
},
{
"name": "Gensim",
"keywords": [
"Natural Language Processing",
"Python",
"Topic Modeling",
"Word Embeddings"
]
},
{
"name": "Tokenizers",
"keywords": [
"Natural Language Processing",
"Python",
"Subword Units",
"Byte-Pair Encoding"
]
},
{
"name": "Word2Vec",
"keywords": [
"Natural Language Processing",
"Python",
"Embeddings",
"Vector Representations"
]
},
{
"name": "GloVe",
"keywords": [
"Natural Language Processing",
"Python",
"Embeddings",
"Vector Representations"
]
},
{
"name": "Sentence-BERT",
"keywords": [
"Natural Language Processing",
"Python",
"Sentence Embeddings",
"Transformer Models"
]
},
{
"name": "HuggingFace Datasets",
"keywords": [
"Natural Language Processing",
"Python",
"Dataset Curation",
"Data Preprocessing"
]
},
{
"name": "BERTopic",
"keywords": [
"Natural Language Processing",
"Python",
"Topic Modeling",
"Embedding Clustering"
]
},
{
"name": "Haystack",
"keywords": [
"Natural Language Processing",
"Python",
"Search Pipelines",
"QA Systems"
]
},
{
"name": "KeyBERT",
"keywords": [
"Natural Language Processing",
"Python",
"Keyword Extraction",
"BERT"
]
},
{
"name": "Top2Vec",
"keywords": [
"Natural Language Processing",
"Python",
"Topic Modeling",
"Semantic Clustering"
]
},
{
"name": "LexNLP",
"keywords": [
"Natural Language Processing",
"Python",
"Legal Text Analytics"
]
},
{
"name": "FastText",
"keywords": [
"Natural Language Processing",
"Python",
"Embeddings",
"Word-Level Models"
]
},
{
"name": "Flair",
"keywords": [
"Natural Language Processing",
"Python",
"NLP Framework",
"Word Embeddings"
]
},
{
"name": "StanfordNLP",
"keywords": [
"Natural Language Processing",
"Python",
"Dependency Parsing",
"NER"
]
},
{
"name": "AllenNLP",
"keywords": [
"Natural Language Processing",
"Python",
"Deep Learning",
"Research"
]
},
{
"name": "Data Engineering",
"keywords": [
"Apache Airflow",
"dagster",
"Kedro",
"dbt",
"Apache Kafka",
"Apache Spark",
"PySpark",
"Beam",
"Prefect",
"Pandas",
"NumPy",
"Polars",
"Dask",
"Ray",
"Modin",
"Vaex",
"Delta Lake",
"Iceberg",
"ETL",
"Data Pipelines",
"Big Data",
"Docker",
"Microservices"
]
},
{
"name": "Apache Airflow",
"keywords": [
"Data Engineering",
"Python",
"Workflow Orchestration",
"ETL Automation"
]
},
{
"name": "dagster",
"keywords": [
"Data Engineering",
"Python",
"Workflow Orchestration",
"Data Pipelines"
]
},
{
"name": "Kedro",
"keywords": [
"Data Engineering",
"Python",
"Pipeline Abstraction",
"Modular Design"
]
},
{
"name": "dbt",
"keywords": [
"Data Engineering",
"Python",
"SQL",
"Data Modeling"
]
},
{
"name": "Apache Kafka",
"keywords": [
"Data Engineering",
"Message Queues",
"Event-Driven Architecture",
"Real-time Data"
]
},
{
"name": "Apache Spark",
"keywords": [
"Data Engineering",
"Big Data",
"Distributed Computing",
"Batch Processing"
]
},
{
"name": "PySpark",
"keywords": [
"Data Engineering",
"Python",
"Apache Spark",
"Distributed Data"
]
},
{
"name": "Beam",
"keywords": [
"Data Engineering",
"Streaming",
"Batch Processing",
"Unified Model"
]
},
{
"name": "Prefect",
"keywords": [
"Data Engineering",
"Python",
"Workflow Management",
"Orchestration"
]
},
{
"name": "Pandas",
"keywords": [
"Data Engineering",
"Python",
"Data Manipulation",
"Data Analysis"
]
},
{
"name": "NumPy",
"keywords": [
"Data Engineering",
"Python",
"Array Computing",
"Performance"
]
},
{
"name": "Dask",
"keywords": [
"Data Engineering",
"Python",
"Parallel Computing",
"Big Data"
]
},
{
"name": "Ray",
"keywords": [
"Data Engineering",
"Python",
"Distributed Computing",
"Scalable ML"
]
},
{
"name": "Modin",
"keywords": [
"Data Engineering",
"Python",
"Parallel DataFrames",
"Pandas Acceleration"
]
},
{
"name": "Delta Lake",
"keywords": [
"Data Engineering",
"ACID Transactions",
"Lakehouse",
"Apache Spark"
]
},
{
"name": "Iceberg",
"keywords": [
"Data Engineering",
"Table Format",
"ACID",
"Lakehouse"
]
},
{
"name": "Web Development",
"keywords": [
"React",
"Next.js",
"Gatsby",
"Remix",
"Redux",
"MobX",
"React Query",
"TailwindCSS",
"Material UI",
"Chakra UI",
"shadcn/ui",
"Radix UI",
"Framer Motion",
"Vue.js",
"Angular",
"Svelte",
"SvelteKit",
"Astro",
"SEO",
"SSR"
]
},
{
"name": "React",
"keywords": [
"Web Development",
"JavaScript",
"TypeScript",
"Hooks",
"SPA"
]
},
{
"name": "Next.js",
"keywords": [
"Web Development",
"TypeScript",
"React",
"SSR",
"SEO"
]
},
{
"name": "Gatsby",
"keywords": [
"Web Development",
"React",
"Static Site Generation",
"SEO"
]
},
{
"name": "Redux",
"keywords": [
"Web Development",
"React",
"State Management",
"TypeScript"
]
},
{
"name": "MobX",
"keywords": [
"Web Development",
"React",
"State Management",
"TypeScript"
]
},
{
"name": "React Query",
"keywords": [
"Web Development",
"React",
"Data Fetching",
"Caching"
]
},
{
"name": "TailwindCSS",
"keywords": [
"Web Development",
"CSS Utility",
"Responsive Design",
"Rapid Prototyping"
]
},
{
"name": "Material UI",
"keywords": [
"Web Development",
"React",
"UI Components",
"Design System"
]
},
{
"name": "Chakra UI",
"keywords": [
"Web Development",
"React",
"UI Components",
"Themeability"
]
},
{
"name": "shadcn/ui",
"keywords": [
"Web Development",
"React",
"Radix UI",
"Design System"
]
},
{
"name": "Radix UI",
"keywords": [
"Web Development",
"React",
"Accessible Components",
"TypeScript"
]
},
{
"name": "Framer Motion",
"keywords": [
"Web Development",
"React",
"Animations",
"Motion Design"
]
},
{
"name": "Vue.js",
"keywords": [
"Web Development",
"JavaScript",
"Reactive Data",
"SPA"
]
},
{
"name": "Angular",
"keywords": [
"Web Development",
"TypeScript",
"MVC",
"SPA"
]
},
{
"name": "API Development",
"keywords": [
"REST",
"GraphQL",
"FastAPI",
"Express.js",
"NestJS",
"Django REST Framework",
"tRPC",
"API Gateway",
"OAuth",
"JWT",
"Swagger/OpenAPI",
"Postman",
"Insomnia",
"Dredd",
"gRPC",
"WebSockets",
"Socket.io",
"WebRTC"
]
},
{
"name": "REST",
"keywords": [
"API Development",
"HTTP Methods",
"CRUD",
"JSON",
"Stateless"
]
},
{
"name": "GraphQL",
"keywords": [
"API Development",
"JavaScript",
"TypeScript",
"Schema",
"Resolvers"
]
},
{
"name": "FastAPI",
"keywords": [
"API Development",
"Python",
"Asynchronous",
"Pydantic"
]
},
{
"name": "Express.js",
"keywords": [
"API Development",
"JavaScript",
"TypeScript",
"Node.js",
"Middleware"
]
},
{
"name": "NestJS",
"keywords": [
"API Development",
"TypeScript",
"Node.js",
"Decorator-based",
"Microservices"
]
},
{
"name": "Django REST Framework",
"keywords": [
"API Development",
"Python",
"Serialization",
"Auth"
]
},
{
"name": "tRPC",
"keywords": [
"API Development",
"TypeScript",
"End-to-end Types",
"RPC"
]
},
{
"name": "API Gateway",
"keywords": [
"API Development",
"Microservices",
"Routing",
"Security"
]
},
{
"name": "OAuth",
"keywords": [
"API Development",
"Auth",
"Access Token",
"Security"
]
},
{
"name": "JWT",
"keywords": [
"API Development",
"Security",
"Authentication",
"JSON Web Tokens"
]
},
{
"name": "Swagger/OpenAPI",
"keywords": [
"API Development",
"Documentation",
"Schema",
"REST"
]
},
{
"name": "Postman",
"keywords": [
"API Development",
"Testing",
"HTTP",
"Automation"
]
},
{
"name": "gRPC",
"keywords": [
"API Development",
"Remote Procedure Call",
"Binary Protocol",
"Microservices"
]
},
{
"name": "WebSockets",
"keywords": [
"API Development",
"JavaScript",
"TypeScript",
"Real-time",
"Bi-directional"
]
},
{
"name": "Socket.io",
"keywords": [
"API Development",
"JavaScript",
"TypeScript",
"Real-time",
"Rooms"
]
},
{
"name": "WebRTC",
"keywords": [
"API Development",
"JavaScript",
"TypeScript",
"Peer-to-Peer",
"Media Streaming"
]
},
{
"name": "Data Visualization",
"keywords": [
"Matplotlib",
"Seaborn",
"Plotly",
"Dash",
"Bokeh",
"D3.js",
"Observable",
"Tableau",
"Power BI",
"ggplot2",
"Altair",
"Vega-Lite",
"Highcharts",
"Chart.js",
"Apache Superset",
"Grafana",
"Streamlit",
"Gradio",
"Interactive Dashboards",
"Infographics"
]
},
{
"name": "Matplotlib",
"keywords": [
"Data Visualization",
"Python",
"2D Plots",
"Scientific Visualizations"
]
},
{
"name": "Seaborn",
"keywords": [
"Data Visualization",
"Python",
"Statistical Graphics",
"Matplotlib"
]
},
{
"name": "Plotly",
"keywords": [
"Data Visualization",
"Python",
"Interactive Charts",
"Dashboards"
]
},
{
"name": "Dash",
"keywords": [
"Data Visualization",
"Python",
"Plotly",
"Interactive Dashboards"
]
},
{
"name": "Bokeh",
"keywords": [
"Data Visualization",
"Python",
"Interactive Plots",
"Web-based Visualization"
]
},
{
"name": "D3.js",
"keywords": [
"Data Visualization",
"JavaScript",
"TypeScript",
"SVG",
"DOM Manipulation"
]
},
{
"name": "Observable",
"keywords": [
"Data Visualization",
"JavaScript",
"TypeScript",
"Reactive Notebooks"
]
},
{
"name": "Tableau",
"keywords": [
"Data Visualization",
"Business Intelligence",
"Dashboards",
"Analytics"
]
},
{
"name": "Power BI",
"keywords": [
"Data Visualization",
"Business Intelligence",
"Dashboards",
"Microsoft"
]
},
{
"name": "ggplot2",
"keywords": [
"Data Visualization",
"R",
"Grammar of Graphics",
"Statistical Plotting"
]
},
{
"name": "Altair",
"keywords": [
"Data Visualization",
"Python",
"Declarative",
"Vega-Lite"
]
},
{
"name": "Vega-Lite",
"keywords": [
"Data Visualization",
"JavaScript",
"TypeScript",
"Declarative",
"Encodings"
]
},
{
"name": "Highcharts",
"keywords": [
"Data Visualization",
"JavaScript",
"TypeScript",
"Interactive Charts"
]
},
{
"name": "Chart.js",
"keywords": [
"Data Visualization",
"JavaScript",
"TypeScript",
"Canvas"
]
},
{
"name": "Apache Superset",
"keywords": [
"Data Visualization",
"Python",
"Business Intelligence",
"SQL Exploration"
]
},
{
"name": "Grafana",
"keywords": [
"Data Visualization",
"DevOps & CI/CD",
"Monitoring",
"Metrics"
]
},
{
"name": "Streamlit",
"keywords": [
"Data Visualization",
"Python",
"Interactive Apps",
"Data Science"
]
},
{
"name": "Gradio",
"keywords": [
"Data Visualization",
"Python",
"ML Demos",
"Interactive Widgets"
]
},
{
"name": "Cloud Computing",
"keywords": [
"AWS S3",
"AWS EC2",
"AWS Lambda",
"AWS SageMaker",
"GCP BigQuery",
"GCP Cloud Functions",
"Azure Functions",
"Azure Blob Storage",
"Vercel",
"Heroku",
"Netlify",
"Digital Ocean",
"Terraform",
"CloudFormation",
"Pulumi",
"Serverless Framework",
"SAM",
"CDK",
"Containers",
"Kubernetes"
]
},
{
"name": "AWS S3",
"keywords": [
"Cloud Computing",
"Object Storage",
"Static Hosting",
"Data Lake"
]
},
{
"name": "AWS EC2",
"keywords": [
"Cloud Computing",
"Virtual Machines",
"Scalable Compute",
"AMI"
]
},
{
"name": "AWS Lambda",
"keywords": [
"Cloud Computing",
"Serverless",
"Functions",
"Event-Driven"
]
},
{
"name": "AWS SageMaker",
"keywords": [
"Cloud Computing",
"Machine Learning",
"Model Deployment",
"Training"
]
},
{
"name": "GCP BigQuery",
"keywords": [
"Cloud Computing",
"Data Warehouse",
"SQL",
"Analytics"
]
},
{
"name": "GCP Cloud Functions",
"keywords": [
"Cloud Computing",
"Serverless",
"Event-Driven",
"Node.js",
"Python"
]
},
{
"name": "Azure Functions",
"keywords": [
"Cloud Computing",
"Serverless",
"C#",
"Event-Driven"
]
},
{
"name": "Azure Blob Storage",
"keywords": [
"Cloud Computing",
"Object Storage",
"Static Hosting",
"Data Lake"
]
},
{
"name": "Vercel",
"keywords": [
"Cloud Computing",
"Next.js",
"Serverless Functions",
"CDN"
]
},
{
"name": "Heroku",
"keywords": [
"Cloud Computing",
"PaaS",
"Dynos",
"Deployment"
]
},
{
"name": "Netlify",
"keywords": [
"Cloud Computing",
"Static Sites",
"Serverless Functions",
"CDN"
]
},
{
"name": "Digital Ocean",
"keywords": [
"Cloud Computing",
"Droplets",
"Managed Databases",
"Containers"
]
},
{
"name": "Terraform",
"keywords": [
"Cloud Computing",
"IaC",
"Infrastructure",
"Automated Provisioning"
]
},
{
"name": "CloudFormation",
"keywords": [
"Cloud Computing",
"AWS",
"IaC",
"Stack Management"
]
},
{
"name": "Pulumi",
"keywords": [
"Cloud Computing",
"IaC",
"TypeScript",
"Python"
]
},
{
"name": "Serverless Framework",
"keywords": [
"Cloud Computing",
"IaC",
"Lambda",
"Functions"
]
},
{
"name": "SAM",
"keywords": [
"Cloud Computing",
"AWS",
"Serverless",
"Functions"
]
},
{
"name": "CDK",
"keywords": [
"Cloud Computing",
"AWS",
"IaC",
"TypeScript"
]
},
{
"name": "DevOps & CI/CD",
"keywords": [
"Docker",
"Kubernetes",
"Helm",
"ArgoCD",
"GitHub Actions",
"GitLab CI",
"Jenkins",
"Travis CI",
"CircleCI",
"Flux",
"Ansible",
"Grafana",
"Prometheus",
"ELK Stack",
"Sentry",
"OpenTelemetry",
"Datadog",
"New Relic",
"Microservices",
"Monitoring",
"Automation"
]
},
{
"name": "Docker",
"keywords": [
"DevOps & CI/CD",
"Containers",
"Microservices",
"Cloud Computing"
]
},
{
"name": "Kubernetes",
"keywords": [
"DevOps & CI/CD",
"Orchestration",
"Containers",
"Scalability"
]
},
{
"name": "Helm",
"keywords": [
"DevOps & CI/CD",
"Kubernetes",
"Chart",
"Templating"
]
},
{
"name": "ArgoCD",
"keywords": [
"DevOps & CI/CD",
"Kubernetes",
"GitOps",
"Continuous Delivery"
]
},
{
"name": "GitLab CI",
"keywords": [
"DevOps & CI/CD",
"Continuous Integration",
"Pipelines",
"Automation"
]
},
{
"name": "Jenkins",
"keywords": [
"DevOps & CI/CD",
"Continuous Integration",
"Plugins",
"Automation"
]
},
{
"name": "Travis CI",
"keywords": [
"DevOps & CI/CD",
"Continuous Integration",
"Pipelines",
"Automation"
]
},
{
"name": "CircleCI",
"keywords": [
"DevOps & CI/CD",
"Continuous Integration",
"Pipelines",
"Docker"
]
},
{
"name": "Flux",
"keywords": [
"DevOps & CI/CD",
"Kubernetes",
"GitOps",
"Continuous Delivery"
]
},
{
"name": "Ansible",
"keywords": [
"DevOps & CI/CD",
"Configuration Management",
"Automation",
"Provisioning"
]
},
{
"name": "Grafana",
"keywords": [
"DevOps & CI/CD",
"Data Visualization",
"Monitoring",
"Metrics"
]
},
{
"name": "Prometheus",
"keywords": [
"DevOps & CI/CD",
"Monitoring",
"Time-series",
"Alerting"
]
},
{
"name": "ELK Stack",
"keywords": [
"DevOps & CI/CD",
"Elasticsearch",
"Log Monitoring",
"Kibana"
]
},
{
"name": "Sentry",
"keywords": [
"DevOps & CI/CD",
"Error Tracking",
"Monitoring",
"Logging"
]
},
{
"name": "OpenTelemetry",
"keywords": [
"DevOps & CI/CD",
"Observability",
"Tracing",
"Metrics"
]
},
{
"name": "Datadog",
"keywords": [
"DevOps & CI/CD",
"Monitoring",
"Logging",
"Security"
]
},
{
"name": "New Relic",
"keywords": [
"DevOps & CI/CD",
"APM",
"Monitoring",
"Alerts"
]
},
{
"name": "Database Systems",
"keywords": [
"PostgreSQL",
"MySQL",
"SQLite",
"MongoDB",
"Redis",
"Neo4j",
"DynamoDB",
"Cassandra",
"Weaviate",
"InfluxDB",
"KDB+",
"Snowflake",
"Redshift",
"BigQuery",
"Presto/Trino",
"SQLAlchemy",
"Prisma",
"TypeORM",
"Query Optimization",
"ACID"
]
},
{
"name": "PostgreSQL",
"keywords": [
"Database Systems",
"SQL",
"Relational",
"ACID"
]
},
{
"name": "MySQL",
"keywords": [
"Database Systems",
"SQL",
"Relational",
"ACID"
]
},
{
"name": "SQLite",
"keywords": [
"Database Systems",
"SQL",
"Embedded",
"Lightweight"
]
},
{
"name": "MongoDB",
"keywords": [
"Database Systems",
"NoSQL",
"Document Store",
"Scalability"
]
},
{
"name": "Redis",
"keywords": [
"Database Systems",
"In-memory",
"Key-Value",
"Caching"
]
},
{
"name": "Neo4j",
"keywords": [
"Database Systems",
"Graph Database",
"Cypher",
"Relationships"
]
},
{
"name": "DynamoDB",
"keywords": [
"Database Systems",
"NoSQL",
"Key-Value",
"AWS"
]
},
{
"name": "Cassandra",
"keywords": [
"Database Systems",
"NoSQL",
"Column Family",
"High Availability"
]
},
{
"name": "Weaviate",
"keywords": [
"Database Systems",
"Artificial Intelligence",
"Vector Search",
"Semantic Search"
]
},
{
"name": "KDB+",
"keywords": [
"Database Systems",
"Time-series",
"Columnar",
"Financial Data"
]
},
{
"name": "Snowflake",
"keywords": [
"Database Systems",
"Cloud Data Warehouse",
"SQL",
"Scalability"
]
},
{
"name": "Redshift",
"keywords": [
"Database Systems",
"Cloud Data Warehouse",
"SQL",
"AWS"
]
},
{
"name": "BigQuery",
"keywords": [
"Database Systems",
"Cloud Data Warehouse",
"SQL",
"GCP"
]
},
{
"name": "Presto/Trino",
"keywords": [
"Database Systems",
"SQL",
"Distributed Queries",
"Interactive Analytics"
]
},
{
"name": "SQLAlchemy",
"keywords": [
"Database Systems",
"Python",
"ORM",
"SQL"
]
},
{
"name": "Prisma",
"keywords": [
"Database Systems",
"TypeScript",
"JavaScript",
"ORM"
]
},
{
"name": "TypeORM",
"keywords": [
"Database Systems",
"TypeScript",
"JavaScript",
"ORM"
]
},
{
"name": "Operations Research",
"keywords": [
"Gurobi",
"CPLEX",
"AMPL",
"PuLP",
"OR-Tools",
"CVXPY",
"Pyomo",
"NetworkX",
"SciPy Optimize",
"DEAP",
"pymoo",
"SimPy",
"APMonitor",
"GEKKO",
"JuMP",
"Coin-OR",
"GLPK",
"OptaPlanner",
"Mathematical Optimization",
"Fair Division"
]
},
{
"name": "Gurobi",
"keywords": [
"Operations Research",
"MILP",
"Linear Optimization",
"Constraint Programming"
]
},
{
"name": "CPLEX",
"keywords": [
"Operations Research",
"MILP",
"Linear Optimization",
"IBM"
]
},
{
"name": "AMPL",
"keywords": [
"Operations Research",
"Mathematical Modeling",
"Optimization",
"Solvers"
]
},
{
"name": "PuLP",
"keywords": [
"Operations Research",
"Python",
"MILP",
"Linear Optimization"
]
},
{
"name": "OR-Tools",
"keywords": [
"Operations Research",
"Python",
"Constraint Programming",
"Linear Optimization"
]
},
{
"name": "CVXPY",
"keywords": [
"Operations Research",
"Python",
"Convex Optimization",
"Modeling"
]
},
{
"name": "Pyomo",
"keywords": [
"Operations Research",
"Python",
"Mathematical Modeling",
"Optimization"
]
},
{
"name": "NetworkX",
"keywords": [
"Operations Research",
"Python",
"Graph Theory",
"Network Analysis"
]
},
{
"name": "SciPy Optimize",
"keywords": [
"Operations Research",
"Python",
"Nonlinear Optimization",
"Root Finding"
]
},
{
"name": "DEAP",
"keywords": [
"Operations Research",
"Python",
"Evolutionary Algorithms",
"Metaheuristics"
]
},
{
"name": "pymoo",
"keywords": [
"Operations Research",
"Python",
"Multi-objective",
"Metaheuristics"
]
},
{
"name": "SimPy",
"keywords": [
"Operations Research",
"Python",
"Discrete Event Simulation",
"Queueing"
]
},
{
"name": "APMonitor",
"keywords": [
"Operations Research",
"Python",
"Advanced Process Control",
"Optimization"
]
},
{
"name": "GEKKO",
"keywords": [
"Operations Research",
"Python",
"Dynamic Optimization",
"APM"
]
},
{
"name": "JuMP",
"keywords": [
"Operations Research",
"Julia",
"Mathematical Modeling",
"Optimization"
]
},
{
"name": "Coin-OR",
"keywords": [
"Operations Research",
"Open-source",
"Optimization",
"Linear and Integer Programming"
]
},
{
"name": "GLPK",
"keywords": [
"Operations Research",
"Linear Programming",
"Open-source",
"MILP"
]
},
{
"name": "OptaPlanner",
"keywords": [
"Operations Research",
"Java",
"Constraint Solving",
"Planning"
]
},
{
"name": "Statistical Analysis",
"keywords": [
"R",
"Statsmodels",
"SciPy",
"PyMC",
"Stan",
"JAX",
"NumPyro",
"Pingouin",
"Arviz",
"lifelines",
"MGCV",
"Bambi",
"Polars",
"BUGS",
"JAGS",
"Causal Inference",
"Survival Analysis",
"Time Series",
"Experimental Design"
]
},
{
"name": "R",
"keywords": [
"Statistical Analysis",
"MGCV",
"BUGS",
"JAGS",
"Stan",
"ggplot2",
"Tidyverse"
]
},
{
"name": "Statsmodels",
"keywords": [
"Statistical Analysis",
"Python",
"Regression",
"Time Series"
]
},
{
"name": "SciPy",
"keywords": [
"Statistical Analysis",
"Python",
"Integration",
"Optimization"
]
},
{
"name": "PyMC",
"keywords": [
"Statistical Analysis",
"Python",
"Bayesian Inference",
"MCMC"
]
},
{
"name": "Stan",
"keywords": [
"Statistical Analysis",
"R",
"Python",
"Bayesian Inference",
"Hamiltonian Monte Carlo"
]
},
{
"name": "JAX",
"keywords": [
"Statistical Analysis",
"Python",
"Autograd",
"High-performance"
]
},
{
"name": "NumPyro",
"keywords": [
"Statistical Analysis",
"Python",
"Bayesian Inference",
"JAX"
]
},
{
"name": "Pingouin",
"keywords": [
"Statistical Analysis",
"Python",
"Parametric Tests",
"Non-parametric Tests"
]
},
{
"name": "Arviz",
"keywords": [
"Statistical Analysis",
"Python",
"Bayesian Analysis",
"Diagnostics"
]
},
{
"name": "lifelines",
"keywords": [
"Statistical Analysis",
"Python",
"Survival Analysis",
"Cox Models"
]
},
{
"name": "MGCV",
"keywords": [
"Statistical Analysis",
"R",
"Generalized Additive Models",
"Smoothing"
]
},
{
"name": "Bambi",
"keywords": [
"Statistical Analysis",
"Python",
"Bayesian Modeling",
"PyMC"
]
},
{
"name": "Polars",
"keywords": [
"Statistical Analysis",
"Data Engineering",
"Python",
"DataFrames",
"Query Optimization"
]
},
{
"name": "BUGS",
"keywords": [
"Statistical Analysis",
"R",
"Bayesian Inference",
"MCMC"
]
},
{
"name": "JAGS",
"keywords": [
"Statistical Analysis",
"R",
"Bayesian Inference",
"Gibbs Sampling"
]
},
{
"name": "Causal Inference",
"keywords": [
"Statistical Analysis",
"Treatment Effects",
"RCTs",
"Propensity Scores"
]
},
{
"name": "Survival Analysis",
"keywords": [
"Statistical Analysis",
"lifelines",
"Medical Statistics",
"Hazard Functions"
]
},
{
"name": "Time Series",
"keywords": [
"Statistical Analysis",
"Forecasting",
"ARIMA",
"Seasonality",
"Signal Processing"
]
},
{
"name": "Web Scraping",
"keywords": [
"Scrapy",
"Selenium",
"Playwright",
"Puppeteer",
"BeautifulSoup",
"Requests",
"Crawlee",
"PRAW",
"lxml",
"Parsel",
"Apify",
"ScrapingBee",
"ScraperAPI",
"Splash",
"MechanicalSoup",
"pyppeteer",
"Spotipy",
"PyAutoGUI",
"Automation",
"ETL"
]
},
{
"name": "Scrapy",
"keywords": [
"Web Scraping",
"Python",
"Spider",
"Crawling"
]
},
{
"name": "Selenium",
"keywords": [
"Web Scraping",
"Python",
"Browser Automation",
"Testing"
]
},
{
"name": "Playwright",
"keywords": [
"Web Scraping",
"Python",
"TypeScript",
"Browser Automation"
]
},
{
"name": "Puppeteer",
"keywords": [
"Web Scraping",
"JavaScript",
"TypeScript",
"Browser Automation"
]
},
{
"name": "BeautifulSoup",
"keywords": [
"Web Scraping",
"Python",
"HTML Parsing",
"lxml"
]
},
{
"name": "Requests",
"keywords": [
"Web Scraping",
"Python",
"HTTP",
"API Calls"
]
},
{
"name": "Crawlee",
"keywords": [
"Web Scraping",
"JavaScript",
"TypeScript",
"Crawling Framework"
]
},
{
"name": "PRAW",
"keywords": [
"Web Scraping",
"Python",
"Reddit",
"API"
]
},
{
"name": "lxml",
"keywords": [
"Web Scraping",
"Python",
"XML/HTML",
"XPath"
]
},
{
"name": "Parsel",
"keywords": [
"Web Scraping",
"Python",
"Selectors",
"XPath"
]
},
{
"name": "Apify",
"keywords": [
"Web Scraping",
"JavaScript",
"TypeScript",
"Cloud Platform"
]
},
{
"name": "ScrapingBee",
"keywords": [
"Web Scraping",
"JavaScript",
"TypeScript",
"API",
"Headless Browsers"
]
},
{
"name": "ScraperAPI",
"keywords": [
"Web Scraping",
"JavaScript",
"TypeScript",
"Proxy",
"API"
]
},
{
"name": "Splash",
"keywords": [
"Web Scraping",
"Render JS",
"Docker",
"Headless Browser"
]
},
{
"name": "MechanicalSoup",
"keywords": [
"Web Scraping",
"Python",
"HTML Forms",
"Automation"
]
},
{
"name": "pyppeteer",
"keywords": [
"Web Scraping",
"Python",
"Chromium Automation",
"Headless"
]
},
{
"name": "Spotipy",
"keywords": [
"Web Scraping",
"Python",
"Spotify",
"API"
]
},
{
"name": "PyAutoGUI",
"keywords": [
"Web Scraping",
"Python",
"GUI Automation",
"Mouse/Keyboard"
]
},
{
"name": "System Administration",
"keywords": [
"Linux",
"Ubuntu",
"CentOS",
"RHEL",
"Bash",
"Zsh",
"PowerShell",
"SSH",
"Nginx",
"Apache",
"Traefik",
"HAProxy",
"SSL/TLS",
"Let's Encrypt",
"Systemd",
"Cron",
"Fail2ban",
"Wireguard",
"Monitoring",
"Networking"
]
},
{
"name": "Linux",
"keywords": [
"System Administration",
"Kernel",
"File Systems",
"Permissions"
]
},
{
"name": "Ubuntu",
"keywords": [
"System Administration",
"Linux Distros",
"APT",
"Server"
]
},
{
"name": "CentOS",
"keywords": [
"System Administration",
"Linux Distros",
"YUM",
"Server"
]
},
{
"name": "RHEL",
"keywords": [
"System Administration",
"Linux Distros",
"Enterprise",
"Subscription"
]
},
{
"name": "Bash",
"keywords": [
"System Administration",
"Scripting",
"Automation",
"Shell"
]
},
{
"name": "Zsh",
"keywords": [
"System Administration",
"Shell",
"Oh-My-Zsh",
"Productivity"
]
},
{
"name": "PowerShell",
"keywords": [
"System Administration",
"Windows",
"Scripting",
"Automation"
]
},
{
"name": "SSH",
"keywords": [
"System Administration",
"Security",
"Remote Access",
"Keys"
]
},
{
"name": "Nginx",
"keywords": [
"System Administration",
"Web Server",
"Load Balancing",
"Reverse Proxy"
]
},
{
"name": "Apache",
"keywords": [
"System Administration",
"Web Server",
"HTTP",
"Modules"
]
},
{
"name": "Traefik",
"keywords": [
"System Administration",
"Reverse Proxy",
"Docker",
"Routing"
]
},
{
"name": "HAProxy",
"keywords": [
"System Administration",
"Load Balancing",
"High Availability",
"TCP/HTTP"
]
},
{
"name": "SSL/TLS",
"keywords": [
"System Administration",
"Security",
"Encryption",
"HTTPS"
]
},
{
"name": "Let's Encrypt",
"keywords": [
"System Administration",
"SSL/TLS",
"Free Certificates",
"HTTPS"
]
},
{
"name": "Systemd",
"keywords": [
"System Administration",
"Linux",
"Service Management",
"Boot Process"
]
},
{
"name": "Cron",
"keywords": [
"System Administration",
"Linux",
"Scheduling",
"Automation"
]
},
{
"name": "Fail2ban",
"keywords": [
"System Administration",
"Security",
"Brute Force",
"Monitoring"
]
},
{
"name": "Wireguard",
"keywords": [
"System Administration",
"VPN",
"Encryption",
"Networking"
]
},
{
"name": "Blockchain & Web3",
"keywords": [
"Solidity",
"Ethereum",
"Web3.js",
"Ethers.js",
"Hardhat",
"Truffle",
"Foundry",
"Ganache",
"OpenZeppelin",
"IPFS",
"Filecoin",
"Polygon",
"Arbitrum",
"Optimism",
"The Graph",
"Alchemy",
"MetaMask",
"Infura",
"Smart Contracts",
"DApps"
]
},
{
"name": "Solidity",
"keywords": [
"Blockchain & Web3",
"Smart Contracts",
"EVM",
"Ethereum"
]
},
{
"name": "Ethereum",
"keywords": [
"Blockchain & Web3",
"Smart Contracts",
"Mainnet",
"DeFi"
]
},
{
"name": "Web3.js",
"keywords": [
"Blockchain & Web3",
"JavaScript",
"TypeScript",
"Smart Contracts",
"dApp"
]
},
{
"name": "Ethers.js",
"keywords": [
"Blockchain & Web3",
"JavaScript",
"TypeScript",
"Smart Contracts",
"dApp"
]
},
{
"name": "Hardhat",
"keywords": [
"Blockchain & Web3",
"JavaScript",
"TypeScript",
"Testing",
"EVM"
]
},
{
"name": "Truffle",
"keywords": [
"Blockchain & Web3",
"JavaScript",
"TypeScript",
"Smart Contracts",
"CLI"
]
},
{
"name": "Foundry",
"keywords": [
"Blockchain & Web3",
"Rust",
"TypeScript",
"Testing",
"EVM"
]
},
{
"name": "Ganache",
"keywords": [
"Blockchain & Web3",
"JavaScript",
"TypeScript",
"Local Blockchain",
"Testing"
]
},
{
"name": "OpenZeppelin",
"keywords": [
"Blockchain & Web3",
"Solidity",
"Security",
"Smart Contracts"
]
},
{
"name": "IPFS",
"keywords": [
"Blockchain & Web3",
"Distributed Storage",
"Peer-to-Peer",
"Web3"
]
},
{
"name": "Filecoin",
"keywords": [
"Blockchain & Web3",
"Distributed Storage",
"Decentralized",
"Incentives"
]
},
{
"name": "Polygon",
"keywords": [
"Blockchain & Web3",
"Sidechain",
"Scalability",
"DeFi"
]
},
{
"name": "Arbitrum",
"keywords": [
"Blockchain & Web3",
"Layer 2",
"Rollups",
"Scalability"
]
},
{
"name": "Optimism",
"keywords": [
"Blockchain & Web3",
"Layer 2",
"Rollups",
"Scalability"
]
},
{
"name": "The Graph",
"keywords": [
"Blockchain & Web3",
"Indexing",
"Subgraphs",
"Query"
]
},
{
"name": "Alchemy",
"keywords": [
"Blockchain & Web3",
"Developer Tools",
"APIs",
"Infra"
]
},
{
"name": "MetaMask",
"keywords": [
"Blockchain & Web3",
"Wallet",
"Browser Extension",
"Ethereum"
]
},
{
"name": "Infura",
"keywords": [
"Blockchain & Web3",
"Infrastructure",
"APIs",
"Ethereum"
]
},
{
"name": "Product Development",
"keywords": [
"Figma",
"Adobe XD",
"Sketch",
"InVision",
"Zeplin",
"Framer",
"Miro",
"Whimsical",
"Persona Development",
"User Journey Mapping",
"A/B Testing",
"Usability Testing",
"Design Systems",
"Information Architecture",
"Job To Be Done",
"User Stories",
"Lean UX",
"Design Thinking",
"Wireframing",
"Prototyping"
]
},
{
"name": "Figma",
"keywords": [
"Product Development",
"UI/UX",
"Prototyping",
"Design Systems"
]
},
{
"name": "Adobe XD",
"keywords": [
"Product Development",
"UI/UX",
"Prototyping",
"User Flows"
]
},
{
"name": "Sketch",
"keywords": [
"Product Development",
"UI/UX",
"Prototyping",
"Vector Editing"
]
},
{
"name": "Zeplin",
"keywords": [
"Product Development",
"Collaboration",
"Hand-off",
"Design Specs"
]
},
{
"name": "Framer",
"keywords": [
"Product Development",
"UI/UX",
"Prototyping",
"Motion"
]
},
{
"name": "Miro",
"keywords": [
"Product Development",
"Collaboration",
"Whiteboarding",
"Brainstorming"
]
},
{
"name": "Persona Development",
"keywords": [
"Product Development",
"User Research",
"User Experience",
"UX Strategy"
]
},
{
"name": "User Journey Mapping",
"keywords": [
"Product Development",
"UX Design",
"Customer Experience",
"Touchpoints"
]
},
{
"name": "A/B Testing",
"keywords": [
"Product Development",
"Experimentation",
"Conversion Optimization",
"Metrics"
]
},
{
"name": "Usability Testing",
"keywords": [
"Product Development",
"UX Research",
"User Feedback",
"Iterative Design"
]
},
{
"name": "Design Systems",
"keywords": [
"Product Development",
"UI/UX",
"Consistency",
"Scalability"
]
},
{
"name": "Information Architecture",
"keywords": [
"Product Development",
"UX",
"Navigation",
"Hierarchy"
]
},
{
"name": "Job To Be Done",
"keywords": [
"Product Development",
"JTBD",
"User Motivation",
"Innovation"
]
},
{
"name": "User Stories",
"keywords": [
"Product Development",
"Agile",
"Requirements",
"Development"
]
},
{
"name": "Lean UX",
"keywords": [
"Product Development",
"Agile",
"Continuous Validation",
"Iterative Design"
]
},
{
"name": "Design Thinking",
"keywords": [
"Product Development",
"Innovation",
"Empathy",
"Prototyping"
]
},
{
"name": "Project Management",
"keywords": [
"Jira",
"Asana",
"Monday",
"Notion",
"Confluence",
"Obsidian",
"ClickUp",
"Linear",
"Scrum",
"Kanban",
"SAFe",
"Agile",
"Lean",
"Gantt Charts",
"Risk Management",
"Stakeholder Mapping",
"Critical Path Method",
"Earned Value Management",
"Roadmapping"
]
},
{
"name": "Jira",
"keywords": [
"Project Management",
"Scrum",
"Issue Tracking",
"Agile"
]
},
{
"name": "Asana",
"keywords": [
"Project Management",
"Collaboration",
"Tasks",
"Timelines"
]
},
{
"name": "Monday",
"keywords": [
"Project Management",
"Boards",
"Automation",
"Collaboration"
]
},
{
"name": "Notion",
"keywords": [
"Project Management",
"Documentation",
"Knowledge Base",
"Collaboration"
]
},
{
"name": "Confluence",
"keywords": [
"Project Management",
"Atlassian",
"Documentation",
"Knowledge Base"
]
},
{
"name": "Obsidian",
"keywords": [
"Project Management",
"Markdown",
"Knowledge Graph",
"Personal Note-taking"
]
},
{
"name": "ClickUp",
"keywords": [
"Project Management",
"Tasks",
"Collaboration",
"Dashboards"
]
},
{
"name": "Linear",
"keywords": [
"Project Management",
"Issue Tracking",
"Software Teams",
"Sprints"
]
},
{
"name": "Scrum",
"keywords": [
"Project Management",
"Agile",
"Sprints",
"Standups"
]
},
{
"name": "Kanban",
"keywords": [
"Project Management",
"Agile",
"Flow",
"Boards"
]
},
{
"name": "Agile",
"keywords": [
"Project Management",
"Software Development",
"Iterative",
"Collaboration"
]
},
{
"name": "Lean",
"keywords": [
"Project Management",
"Waste Reduction",
"Continuous Improvement",
"Agile"
]
},
{
"name": "Gantt Charts",
"keywords": [
"Project Management",
"Scheduling",
"Timeline",
"Planning"
]
},
{
"name": "Risk Management",
"keywords": [
"Project Management",
"Uncertainty",
"Mitigation",
"Stakeholder Communication"
]
},
{
"name": "Stakeholder Mapping",
"keywords": [
"Project Management",
"Influence",
"Collaboration",
"Engagement"
]
},
{
"name": "Critical Path Method",
"keywords": [
"Project Management",
"Scheduling",
"Dependencies",
"Resource Allocation"
]
},
{
"name": "Earned Value Management",
"keywords": [
"Project Management",
"Budget",
"Performance",
"Monitoring"
]
},
{
"name": "Research & Technical Writing",
"keywords": [
"Sphinx",
"Docusaurus",
"MkDocs",
"LaTeX",
"Markdown",
"MDX",
"AsciiDoc",
"Pandoc",
"GitBook",
"JupyterBook",
"Read the Docs",
"Zotero",
"Overleaf",
"Mendeley",
"Literature Reviews",
"Systematic Reviews",
"Meta-analysis",
"Technical Documentation",
"White Papers",
"Academic Publishing"
]
},
{
"name": "Sphinx",
"keywords": [
"Research & Technical Writing",
"Python",
"Documentation",
"API Docs"
]
},
{
"name": "Docusaurus",
"keywords": [
"Research & Technical Writing",
"JavaScript",
"TypeScript",
"Documentation"
]
},
{
"name": "MkDocs",
"keywords": [
"Research & Technical Writing",
"Markdown",
"Documentation",
"Themeing"
]
},
{
"name": "LaTeX",
"keywords": [
"Research & Technical Writing",
"Mathematics",
"Typesetting",
"Academic Publishing"
]
},
{
"name": "Markdown",
"keywords": [
"Research & Technical Writing",
"Simplicity",
"Formatting",
"GitHub"
]
},
{
"name": "MDX",
"keywords": [
"Research & Technical Writing",
"React",
"Extended Markdown",
"Documentation"
]
},
{
"name": "AsciiDoc",
"keywords": [
"Research & Technical Writing",
"Documentation",
"Markup",
"Books"
]
},
{
"name": "Pandoc",
"keywords": [
"Research & Technical Writing",
"File Conversion",
"Markdown",
"LaTeX"
]
},
{
"name": "GitBook",
"keywords": [
"Research & Technical Writing",
"Version Control",
"Docs as Code",
"Collaboration"
]
},
{
"name": "JupyterBook",
"keywords": [
"Research & Technical Writing",
"Python",
"Notebooks",
"Documentation"
]
},
{
"name": "Read the Docs",
"keywords": [
"Research & Technical Writing",
"Hosting",
"Sphinx",
"Documentation"
]
},
{
"name": "Zotero",
"keywords": [
"Research & Technical Writing",
"Reference Management",
"Bibliography",
"Collaboration"
]
},
{
"name": "Overleaf",
"keywords": [
"Research & Technical Writing",
"LaTeX",
"Collaboration",
"Academic Papers"
]
},
{
"name": "Mendeley",
"keywords": [
"Research & Technical Writing",
"Reference Management",
"PDF Annotation",
"Collaboration"
]
},
{
"name": "Literature Reviews",
"keywords": [
"Research & Technical Writing",
"Academic",
"Bibliography",
"Analysis"
]
},
{
"name": "Systematic Reviews",
"keywords": [
"Research & Technical Writing",
"Academia",
"Meta-analysis",
"Protocol"
]
},
{
"name": "Meta-analysis",
"keywords": [
"Research & Technical Writing",
"Statistics",
"Aggregation",
"Academic"
]
},
{
"name": "Technical Documentation",
"keywords": [
"Research & Technical Writing",
"APIs",
"Dev Guides",
"User Manuals"
]
},
{
"name": "Hardware & IoT",
"keywords": [
"Arduino",
"Raspberry Pi",
"ESP32",
"ESP8266",
"Jetson Nano",
"MQTT",
"Bluetooth Low Energy",
"ZigBee",
"Z-Wave",
"LoRaWAN",
"CoAP",
"Home Assistant",
"OpenCV",
"TensorFlow Lite",
"Edge TPU",
"Sensors & Actuators",
"PCB Design",
"KiCad",
"Embedded Systems"
]
},
{
"name": "Arduino",
"keywords": [
"Hardware & IoT",
"Microcontroller",
"C++",
"Prototyping"
]
},
{
"name": "Raspberry Pi",
"keywords": [
"Hardware & IoT",
"Linux",
"Python",
"Prototyping"
]
}
],
"languages": [
{
"language": "English",
"fluency": "Native Speaker"
},
{
"language": "Spanish",
"fluency": "Elementary"
}
],
"interests": [
{
"name": "AI & Cognitive Systems",
"keywords": [
"Multimodal Learning",
"Reinforcement Learning",
"Neuro-symbolic AI",
"Foundation Models",
"AI Alignment",
"AI Ethics",
"Distributed Training",
"Computational Creativity"
]
},
{
"name": "Multimodal Learning",
"keywords": [
"AI & Cognitive Systems",
"Computer Vision",
"Natural Language Processing",
"Deep Learning"
]
},
{
"name": "Reinforcement Learning",
"keywords": [
"AI & Cognitive Systems",
"Agent-based",
"Policy Gradients",
"Q-learning"
]
},
{
"name": "Neuro-symbolic AI",
"keywords": [
"AI & Cognitive Systems",
"Symbolic Reasoning",
"Neural Networks"
]
},
{
"name": "Foundation Models",
"keywords": [
"AI & Cognitive Systems",
"Transformer Architecture",
"GPT",
"BERT"
]
},
{
"name": "AI Alignment",
"keywords": [
"AI & Cognitive Systems",
"Safety",
"Ethics",
"Value Learning"
]
},
{
"name": "AI Ethics",
"keywords": [
"AI & Cognitive Systems",
"Fairness",
"Transparency",
"Bias Mitigation"
]
},
{
"name": "Distributed Training",
"keywords": [
"AI & Cognitive Systems",
"Parallel Computing",
"Parameter Servers",
"GPU Clusters"
]
},
{
"name": "Computational Creativity",
"keywords": [
"AI & Cognitive Systems",
"Generative Art",
"GANs",
"Music Generation"
]
},
{
"name": "Distributed Systems Architecture",
"keywords": [
"High-Performance Computing",
"Microservices Design",
"Edge Computing",
"Consensus Algorithms",
"Event-Driven Architecture",
"Resilience Patterns",
"Scalability Solutions",
"Distributed Databases"
]
},
{
"name": "High-Performance Computing",
"keywords": [
"Distributed Systems Architecture",
"Parallel Algorithms",
"Cluster Computing",
"CUDA"
]
},
{
"name": "Microservices Design",
"keywords": [
"Distributed Systems Architecture",
"Containers",
"Service Mesh",
"DevOps & CI/CD"
]
},
{
"name": "Edge Computing",
"keywords": [
"Distributed Systems Architecture",
"IoT",
"Latency",
"Local Processing"
]
},
{
"name": "Consensus Algorithms",
"keywords": [
"Distributed Systems Architecture",
"Raft",
"Paxos",
"Byzantine Fault Tolerance"
]
},
{
"name": "Event-Driven Architecture",
"keywords": [
"Distributed Systems Architecture",
"Asynchronous",
"Message Queues",
"Microservices"
]
},
{
"name": "Resilience Patterns",
"keywords": [
"Distributed Systems Architecture",
"Circuit Breaker",
"Bulkhead",
"Retry"
]
},
{
"name": "Scalability Solutions",
"keywords": [
"Distributed Systems Architecture",
"Sharding",
"Load Balancing",
"Auto-scaling"
]
},
{
"name": "Distributed Databases",
"keywords": [
"Distributed Systems Architecture",
"Replication",
"Partitioning",
"CAP Theorem"
]
},
{
"name": "Quantitative Finance Engineering",
"keywords": [
"Market Microstructure",
"Statistical Arbitrage",
"Portfolio Optimization",
"Algorithmic Trading",
"Risk Management Systems",
"High-Frequency Trading",
"Time Series Forecasting",
"Factor Modeling"
]
},
{
"name": "Market Microstructure",
"keywords": [
"Quantitative Finance Engineering",
"Exchange Dynamics",
"Order Books",
"Bid-Ask Spread"
]
},
{
"name": "Statistical Arbitrage",
"keywords": [
"Quantitative Finance Engineering",
"Pairs Trading",
"Mean Reversion",
"Machine Learning"
]
},
{
"name": "Portfolio Optimization",
"keywords": [
"Quantitative Finance Engineering",
"Markowitz",
"CVaR",
"Multi-asset"
]
},
{
"name": "Algorithmic Trading",
"keywords": [
"Quantitative Finance Engineering",
"Python",
"Backtesting",
"Market Data"
]
},
{
"name": "Risk Management Systems",
"keywords": [
"Quantitative Finance Engineering",
"Value at Risk",
"Hedging",
"Stress Testing"
]
},
{
"name": "High-Frequency Trading",
"keywords": [
"Quantitative Finance Engineering",
"Latency",
"Colocation",
"Ultra-low Latency"
]
},
{
"name": "Time Series Forecasting",
"keywords": [
"Quantitative Finance Engineering",
"Machine Learning",
"ARIMA",
"Prophet"
]
},
{
"name": "Factor Modeling",
"keywords": [
"Quantitative Finance Engineering",
"Cross-Sectional Analysis",
"Risk Factors",
"Alpha Generation"
]
},
{
"name": "Sports Analytics Innovation",
"keywords": [
"Basketball Performance Metrics",
"Predictive Injury Modeling",
"Player Valuation Methods",
"Game Strategy Optimization",
"Computer Vision in Sports",
"Bayesian Sports Modeling",
"Sports Data Visualization",
"Team Composition Analytics"
]
},
{
"name": "Basketball Performance Metrics",
"keywords": [
"Sports Analytics Innovation",
"NBA",
"Metrics",
"Advanced Stats"
]
},
{
"name": "Predictive Injury Modeling",
"keywords": [
"Sports Analytics Innovation",
"Machine Learning",
"Time Series",
"Risk Assessment"
]
},
{
"name": "Player Valuation Methods",
"keywords": [
"Sports Analytics Innovation",
"Economics",
"Analytics",
"Contracts"
]
},
{
"name": "Game Strategy Optimization",
"keywords": [
"Sports Analytics Innovation",
"Tactics",
"Opponent Scouting",
"Operations Research"
]
},
{
"name": "Computer Vision in Sports",
"keywords": [
"Sports Analytics Innovation",
"Image Processing",
"Motion Tracking",
"Pose Estimation"
]
},
{
"name": "Bayesian Sports Modeling",
"keywords": [
"Sports Analytics Innovation",
"Statistics",
"Probabilistic",
"Team Performance"
]
},
{
"name": "Sports Data Visualization",
"keywords": [
"Sports Analytics Innovation",
"Data Visualization",
"Dashboards",
"Shot Charts"
]
},
{
"name": "Team Composition Analytics",
"keywords": [
"Sports Analytics Innovation",
"Rosters",
"Lineup Efficiency",
"Player Chemistry"
]
},
{
"name": "Advanced Optimization Methods",
"keywords": [
"Combinatorial Algorithms",
"Network Flow Optimization",
"Constraint Programming",
"Multi-objective Optimization",
"Stochastic Programming",
"Metaheuristics",
"Supply Chain Optimization",
"Decision Theory"
]
},
{
"name": "Combinatorial Algorithms",
"keywords": [
"Advanced Optimization Methods",
"Backtracking",
"Branch and Bound",
"Graph-based"
]
},
{
"name": "Network Flow Optimization",
"keywords": [
"Advanced Optimization Methods",
"Min-Cut/Max-Flow",
"Linear Programming",
"Capacity Constraints"
]
},
{
"name": "Constraint Programming",
"keywords": [
"Advanced Optimization Methods",
"Operations Research",
"Domain Reduction",
"Solvers"
]
},
{
"name": "Multi-objective Optimization",
"keywords": [
"Advanced Optimization Methods",
"Pareto Front",
"Trade-off Analysis",
"Evolutionary Algorithms"
]
},
{
"name": "Stochastic Programming",
"keywords": [
"Advanced Optimization Methods",
"Uncertainty",
"Scenarios",
"Robustness"
]
},
{
"name": "Metaheuristics",
"keywords": [
"Advanced Optimization Methods",
"Genetic Algorithms",
"Simulated Annealing",
"Tabu Search"
]
},
{
"name": "Supply Chain Optimization",
"keywords": [
"Advanced Optimization Methods",
"Logistics",
"Inventory Management",
"Distribution"
]
},
{
"name": "Decision Theory",
"keywords": [
"Advanced Optimization Methods",
"Expected Value",
"Utility",
"Risk Preferences"
]
},
{
"name": "Outdoor & Adventure Technology",
"keywords": [
"Navigation Systems",
"Adventure Sports Tracking",
"Wilderness Photography",
"Backcountry Hiking",
"Alpine Climbing",
"Mountain Biking",
"Trail Running Analytics",
"Outdoor IoT Applications"
]
},
{
"name": "Navigation Systems",
"keywords": [
"Outdoor & Adventure Technology",
"GPS",
"Route Planning",
"Maps"
]
},
{
"name": "Adventure Sports Tracking",
"keywords": [
"Outdoor & Adventure Technology",
"Wearables",
"Sensors",
"Analytics"
]
},
{
"name": "Wilderness Photography",
"keywords": [
"Outdoor & Adventure Technology",
"Cameras",
"Composition",
"Landscape"
]
},
{
"name": "Backcountry Hiking",
"keywords": [
"Outdoor & Adventure Technology",
"Navigation",
"Safety",
"Long-distance"
]
},
{
"name": "Alpine Climbing",
"keywords": [
"Outdoor & Adventure Technology",
"Ropes",
"Anchors",
"High Altitude"
]
},
{
"name": "Mountain Biking",
"keywords": [
"Outdoor & Adventure Technology",
"Cycling",
"Trails",
"Suspension"
]
},
{
"name": "Trail Running Analytics",
"keywords": [
"Outdoor & Adventure Technology",
"Strava",
"GPS Data",
"Performance"
]
},
{
"name": "Outdoor IoT Applications",
"keywords": [
"Outdoor & Adventure Technology",
"Sensors",
"Edge Computing",
"Low Power"
]
},
{
"name": "Technology Venture Creation",
"keywords": [
"Startup Ecosystems",
"Product-Market Fit Methods",
"Lean Startup Methodology",
"Technical Due Diligence",
"Venture Funding Strategies",
"Growth Engineering",
"Business Model Innovation",
"Tech Incubator Development"
]
},
{
"name": "Startup Ecosystems",
"keywords": [
"Technology Venture Creation",
"Accelerators",
"Mentoring",
"Investment"
]
},
{
"name": "Product-Market Fit Methods",
"keywords": [
"Technology Venture Creation",
"User Feedback",
"Validation",
"Pivot"
]
},
{
"name": "Lean Startup Methodology",
"keywords": [
"Technology Venture Creation",
"MVP",
"Build-Measure-Learn",
"Validation"
]
},
{
"name": "Technical Due Diligence",
"keywords": [
"Technology Venture Creation",
"Feasibility",
"Risk Assessment",
"Scalability"
]
},
{
"name": "Venture Funding Strategies",
"keywords": [
"Technology Venture Creation",
"Seed Capital",
"Series A/B/C",
"Pitch Deck"
]
},
{
"name": "Growth Engineering",
"keywords": [
"Technology Venture Creation",
"Growth Hacking",
"Metrics",
"Experiments"
]
},
{
"name": "Business Model Innovation",
"keywords": [
"Technology Venture Creation",
"Revenue Streams",
"Strategic Partnerships",
"Value Proposition"
]
},
{
"name": "Tech Incubator Development",
"keywords": [
"Technology Venture Creation",
"Community",
"Mentorship",
"Funding"
]
},
{
"name": "Neuroscience",
"keywords": []
},
{
"name": "Philosophy",
"keywords": []
},
{
"name": "Government",
"keywords": []
},
{
"name": "Metaphysics",
"keywords": []
},
{
"name": "Physics",
"keywords": []
},
{
"name": "Music",
"keywords": []
}
],
"projects": [
{
"name": "Personal Website: w4w.dev",
"description": "A contemporary portfolio and technical blog showcasing advanced front-end architectures, performance optimization methodologies, and dynamic UI components.",
"highlights": [
"Implemented a Next.js site with TypeScript, MUI, TailwindCSS, and SCSS, achieving exemplary Lighthouse performance metrics",
"Deployed a highly interactive interface with Framer Motion animations, particle effects, and fully responsive dark/light themes",
"Applied robust SEO techniques via semantic HTML and structured data, elevating organic search visibility",
"Established CI/CD pipelines with GitHub Actions for reliable production deployments and minimal service downtime"
],
"keywords": [
"Next.js",
"TypeScript",
"React",
"TailwindCSS",
"Material UI",
"Framer Motion",
"GitHub Actions",
"Performance Optimization",
"SEO",
"Web Development",
"Serverless Frameworks"
],
"startDate": "2018-11",
"url": "https://www.w4w.dev/",
"roles": [
"Developer",
"Designer",
"DevOps Engineer"
],
"entity": "Personal",
"type": "application"
},
{
"name": "Algorithmic Cryptocurrency Trading System",
"description": "An automated, high-frequency cryptocurrency trading platform leveraging deep learning for short-term price forecasting, portfolio optimization, and risk mitigation.",
"highlights": [
"Developed custom high-frequency trading algorithms processing numerous daily trades, outperforming manual strategies",
"Constructed TensorFlow and PyTorch models integrating multiple market indicators for robust price forecasting",
"Implemented adaptive risk controls with volatility-adjusted position sizing to curb drawdowns amid market turbulence",
"Orchestrated a real-time data pipeline consolidating exchange APIs for high-volume feed ingestion"
],
"keywords": [
"Python",
"Deep Learning",
"TensorFlow",
"PyTorch",
"Time Series Analysis",
"Algorithmic Trading",
"Cryptocurrency",
"Risk Management",
"Websockets",
"Financial APIs",
"Quantitative Finance Engineering",
"Machine Learning"
],
"startDate": "2020-01",
"endDate": "2020-12",
"url": "",
"roles": [
"Developer",
"Quant Analyst",
"System Architect"
],
"entity": "Personal",
"type": "application"
},
{
"name": "NBA Analytics Pipeline",
"description": "Comprehensive data engineering venture establishing a large open-source NBA database and analytics framework with automated, cost-free workflows.",
"highlights": [
"Curated a publicly available NBA database (SQLite) on Kaggle, normalizing historical data from 1946 to the present",
"Executed cost-free ETL pipelines via GitHub Actions and Kaggle, ensuring weekly updates without infrastructure overhead",
"Utilized containerized Python microservices under Docker, boosting pipeline reliability and throughput",
"Implemented automated data integrity checks to detect anomalies and preserve dataset fidelity over time"
],
"keywords": [
"Python",
"SQLite",
"GitHub Actions",
"Kaggle",
"Docker",
"ETL Pipeline",
"Data Engineering",
"Sports Analytics",
"Microservices",
"Data Modeling",
"Sports Analytics Innovation"
],
"startDate": "2021-04",
"endDate": "2021-06",
"url": "https://www.kaggle.com/datasets/wyattowalsh/basketball",
"roles": [
"Lead Developer",
"Data Engineer",
"Database Architect"
],
"entity": "Personal",
"type": "database"
},
{
"name": "Regularized Linear Regression Deep Dive",
"description": "Dedicated academic inquiry into regularized regression methods, featuring proprietary algorithmic implementations and practitioner-oriented publications.",
"highlights": [
"Published three in-depth articles on Towards Data Science, garnering substantial engagement with foundational regularized regression theory",
"Developed pairwise coordinate descent and cross-validation routines from first principles in NumPy, paralleling scikit-learn performance",
"Open-sourced the complete codebase with extensive documentation, frequently referenced by data science practitioners",
"Explored novel hyperparameter optimization strategies for regularization paths, boosting cross-validation efficiency"
],
"keywords": [
"Python",
"NumPy",
"Linear Regression",
"Lasso",
"Ridge Regression",
"Elastic Net",
"Optimization",
"Coordinate Descent",
"Machine Learning",
"Technical Writing",
"Statistical Analysis"
],
"startDate": "2019-04",
"endDate": "2019-05",
"url": "https://github.com/wyattowalsh/regularized-regression-from-scratch",
"roles": [
"Researcher",
"Developer",
"Technical Author"
],
"entity": "Personal",
"type": "research"
},
{
"name": "NBA Game Attendance Forecaster",
"description": "End-to-end ML pipeline forecasting NBA game attendance using multifactor analysis of team performance, market economics, and scheduling variables.",
"highlights": [
"Utilized gradient boosting algorithms (XGBoost) to produce accurate attendance forecasts, supporting venue logistics and planning",
"Created a fully automated ML workflow with data ingestion, feature engineering, and Bayesian hyperparameter tuning",
"Conducted thorough exploratory data analysis to isolate key attendance drivers (scheduling, player availability, etc.)",
"Developed an interactive dashboard with Plotly and Dash for scenario analysis by diverse stakeholders"
],
"keywords": [
"Python",
"Machine Learning",
"XGBoost",
"Scikit-learn",
"Pandas",
"Feature Engineering",
"Data Visualization",
"Plotly",
"Sports Analytics",
"Time Series",
"Sports Analytics Innovation"
],
"startDate": "2019-10",
"endDate": "2020-01",
"url": "https://github.com/wyattowalsh/NBA-attendance-prediction",
"roles": [
"Data Scientist",
"ML Engineer",
"Analyst"
],
"entity": "Personal",
"type": "application"
},
{
"name": "Mixed Integer Linear Programming for Fair Division Problems",
"description": "Advanced operations research initiative introducing novel MILP formulations for equitable resource allocation, emphasizing computational performance and policy considerations.",
"highlights": [
"Developed MILP models in AMPL and CPLEX, reducing computational overhead relative to established fair allocation protocols",
"Constructed 3D Python visualizations for multi-dimensional fairness analysis, clarifying complex trade-off terrains",
"Built a benchmark dataset contrasting various fairness paradigms, serving as a standardized reference for subsequent studies",
"Published findings on computational trade-offs in envy-free allocation, illuminating implications for policy and mechanism design"
],
"keywords": [
"AMPL",
"CPLEX",
"Mixed Integer Linear Programming",
"Operations Research",
"Mathematical Optimization",
"Fair Division",
"Python",
"3D Visualization",
"Computational Economics",
"Algorithm Design"
],
"startDate": "2020-03",
"endDate": "2020-05",
"url": "https://github.com/wyattowalsh/explorations-in-envy-free-allocations",
"roles": [
"Operations Researcher",
"Optimization Engineer",
"Data Analyst"
],
"entity": "Academic",
"type": "research"
},
{
"name": "Cellular Controlled Quadcopter",
"description": "Proof-of-concept hardware initiative demonstrating drone control over cellular networks, augmented by real-time AR enhancements for beyond-line-of-sight operations.",
"highlights": [
"Integrated 4G-based drone connectivity for extended-range control under fluctuating signal conditions",
"Engineered custom firmware and optimization algorithms to minimize latency in feedback loops over cellular networks",
"Iterated multiple prototypes addressing signal stability, power constraints, and aerodynamic efficiency",
"Implemented AR overlays for real-time telemetry, heightening operator situational awareness beyond line-of-sight"
],
"keywords": [
"Drone Engineering",
"Embedded Systems",
"Cellular IoT",
"4G Connectivity",
"Augmented Reality",
"Real-time Control Systems",
"Hardware Prototyping",
"Firmware Development",
"Edge Computing",
"Hardware & IoT"
],
"startDate": "2014-10",
"endDate": "2015-04",
"url": "",
"roles": [
"Hardware Engineer",
"Firmware Developer",
"Project Lead"
],
"entity": "Bot Systems",
"type": "hardware"
}
],
"meta": {
"version": "v1.0.0",
"canonical": "https://github.com/jsonresume/resume-schema/blob/v1.0.0/schema.json",
"lastModified": "2024-09-10"
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment