Last active
November 15, 2020 18:00
-
-
Save xccds/2728866 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(glmnet) | |
library(reshape2) | |
# 读入数据 | |
data <- read.csv('d:/ex2data2.txt',F) | |
# 散点图 | |
ggplot()+ | |
geom_point(data=data,aes(V1,V2,colour=factor(V3), | |
shape=factor(V3)),size=3) | |
# 建立六阶多项式自变量 | |
attach(data) | |
degree = 6 | |
X = matrix(rep(1,length(V1)),ncol=1) | |
for (i in 1:degree) { | |
for (j in 0:i) { | |
X <-cbind(X, (V1^(i-j))*V2^j) | |
} | |
} | |
x<- X[,-1] | |
Y <- data$V3 | |
# 用glmnet包建模 | |
model <- cv.glmnet(x,Y,family="binomial",type.measure="deviance") | |
# 绘制CV曲线图,选择最佳lambda值 | |
plot(model) | |
model$lambda.1se | |
# 提取最终模型 | |
model.final <- model$glmnet.fit | |
# 取得简洁模型的参数系数 | |
model.coef <- coef(model$glmnet.fit, s = model$lambda.1se) | |
# 取得原始模型的参数系数 | |
all.coef <- coef(model$glmnet.fit, s = min(model.final$lambda)) | |
# 可以用predict进行预测 | |
# pre <-predict(model.final,newx=x,s=model$lambda.1se,type='class') | |
# table(Y,pre) | |
# 下面的工作全部是为了绘制决策边界 | |
u <- seq(-1,1.2, len=200) | |
v <- seq(-1,1.2, len=200) | |
z28 <-z9 <- matrix(0, length(u), length(v)) | |
mapFeature <- function(u,v, degree=6) { | |
out <- sapply(0:degree,function(i) | |
sapply(0:i, function(j) | |
u^(i-j) * v^j | |
) | |
) | |
out <- unlist(out) | |
return(out) | |
} | |
for (i in 1:length(u)) { | |
for (j in 1:length(v)) { | |
features <- mapFeature(u[i],v[j]) | |
z9[i,j] <- as.numeric(features %*% model.coef) | |
z28[i,j] <- as.numeric(features %*%all.coef) | |
} | |
} | |
rownames(z9) <- rownames(z28) <- as.character(u) | |
colnames(z9) <- colnames(z28) <- as.character(v) | |
z9.melted <- melt(z9) | |
z28.melted <- melt(z28) | |
z9.melted <- data.frame(z9.melted, lambda=9) | |
z28.melted <- data.frame(z28.melted, lambda=28) | |
zz <- rbind(z9.melted, z28.melted) | |
zz$lambda <- factor(zz$lambda) | |
colnames(zz) <- c("u", "v", "z", "lambda") | |
p <- ggplot()+ | |
geom_point(data=data,aes(V1,V2,colour=factor(V3),shape=factor(V3)),size=3) + | |
geom_contour(data=zz, aes(u, v, z = z, | |
group=lambda, colour=lambda),bins=1,size=1) | |
p |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment