Skip to content

Instantly share code, notes, and snippets.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
#原始的方式
lines = [line.split(',') for line in open('iris.csv')]
df = [[float(x) for x in line[:4]] for line in lines[1:]]
#使用numpy包
import numpy as np
lines = np.loadtxt('iris.csv',delimiter=',',dtype='str')
df = lines[1:,:4].astype('float')
import numpy as np
x = np.random.randn(100)
y = 2*x + np.random.randn(100)
%load_ext rpy2.ipython
%%R -i x,y -w 500 -h 300
df <- data.frame(x,y)
m <- lm(y~x)
inter <- m$coef[1]
# 假设七个岛人口数分布如下
# 1:7/sum(1:7)
# 尝试10万次旅行
trajLength = 1e5
trajectory = rep( 0 , trajLength )
trajectory[1] = 3 # 第一次在第3个岛上
target = function(currentPosition,proposedJump){
tartetposition = currentPosition+proposedJump
p = min(1,tartetposition/currentPosition)
myData=c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)
# 尝试1万个不同的参数
tryn = 1e4
Theta = sort(runif(tryn))
pTheta = 1/tryn
z = sum( myData==1 )
N = length( myData )
# 似然函数
pDataGivenTheta = Theta^z * (1-Theta)^(N-z)
pData = sum( pDataGivenTheta * pTheta )
# 基于《统计模拟和R实现》一书例子
import numpy as np
from numpy import random as rm
import pandas as pd
def simulation(T=4200):
t = 0;nA =0;nD=0;n=0;A=[];D=[];N=[];S=[]
tA = rm.exponential(10,1) # 客来时间
tD = inf # 客走时间
while True:
@xccds
xccds / lme4.R
Last active August 29, 2015 13:56
lme4.R
# 广义混合效应模型
glme <- function (){
library(lme4)
set.seed(820)
ni <- c(12, 13, 14, 15, 16, 13, 11, 17, 13, 16)
ndset <- length(ni)
xx <- matrix(rep(0, length = max(ni) * ndset),
ncol = ndset)
bbi <- rnorm(ndset, mean = 0, sd = 1)
for (ii in 1:ndset){
# Data generation of Random Intercept and slope model
a0 <- 9.9
a1 <- 2
n <- c(12, 13, 14, 15, 16, 13)
npeople <- length(n)
set.seed(1)
si <- rnorm(npeople, mean = 0, sd = 0.5) # random slope
x <- matrix(rep(0, length = max(n) * npeople),
ncol = npeople)
for (i in 1:npeople){
rem2 <- function (){
library(nlme)
a0 <- 9.9
a1 <- 2
# 对6个人重复测量多次
ni <- c(12, 13, 14, 15, 16, 13)
nyear <- length(ni)
set.seed(205)
# 构造x值
xx <- matrix(rep(0, length=max(ni) * nyear),
@xccds
xccds / walk.py
Last active December 30, 2015 02:09
# 加载库
import numpy as np
import pandas as pd
from ggplot import *
# 生成二维随机游走数据
def walk(n):
NS = randint(0,2,size=n)
WE = 1 - NS
xstep = np.random.choice([1,-1],size=n,replace=True) * WE