Skip to content

Instantly share code, notes, and snippets.

@xeoncross
Forked from HoraceBury/_mathlib.lua
Created March 12, 2014 16:58
Show Gist options
  • Save xeoncross/9511295 to your computer and use it in GitHub Desktop.
Save xeoncross/9511295 to your computer and use it in GitHub Desktop.
-- mathlib.lua
--[[
Maths extension library for use in Corona SDK by Matthew Webster.
All work derived from referenced sources.
twitter: @horacebury
blog: http://springboardpillow.blogspot.co.uk/2012/04/sample-code.html
code exchange: http://code.coronalabs.com/search/node/HoraceBury
github: https://gist.github.com/HoraceBury
]]--
--[[
References:
http://stackoverflow.com/questions/385305/efficient-maths-algorithm-to-calculate-intersections
http://stackoverflow.com/questions/4543506/algorithm-for-intersection-of-2-lines
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=geometry2#reflection
http://gmc.yoyogames.com/index.php?showtopic=433577
http://local.wasp.uwa.edu.au/~pbourke/geometry/
http://alienryderflex.com/polygon/
http://alienryderflex.com/polygon_fill/
http://www.amazon.com/dp/1558607323/?tag=stackoverfl08-20
http://www.amazon.co.uk/s/ref=nb_sb_noss_1?url=search-alias%3Daps&field-keywords=Real-Time+Collision+Detection
http://en.wikipedia.org/wiki/Line-line_intersection
http://developer.coronalabs.com/forum/2010/11/17/math-helper-functions-distancebetween-and-anglebetween
http://www.mathsisfun.com/algebra/vectors-dot-product.html
http://www.mathsisfun.com/algebra/vector-calculator.html
http://lua-users.org/wiki/PointAndComplex
http://www.math.ntnu.no/~stacey/documents/Codea/Library/Vec3.lua
http://www.iforce2d.net/forums/viewtopic.php?f=4&t=79&sid=b9ecd62533361594e321de04b3929d4f
http://rosettacode.org/wiki/Dot_product#Lua
http://chipmunk-physics.net/forum/viewtopic.php?f=1&t=2215
http://www.fundza.com/vectors/normalize/index.html
http://www.mathopenref.com/coordpolygonarea2.html
http://stackoverflow.com/questions/2705542/returning-the-nearest-multiple-value-of-a-number
http://members.tripod.com/c_carleton/dotprod.html/
http://www.1728.org/density.htm
]]--
--[[
Functions:
nearestMultiple = math.nearest( number, multiple )
len = lengthOf( a, b )
{x,y} = rotateTo( point, degrees )
{x,y} = rotateAboutPoint( point, centre, degrees, round )
angleOfPoint( pt )
angleBetweenPoints( a, b )
angleOf( a, b )
angle = angleBetween( srcObj, dstObj )
dot = dotProduct( ax, ay, bx, by )
extrudeToLen( origin, point, lenOrMin, max )
smallestAngleDiff( target, source )
angleAt( centre, first, second )
isPointInAngle( centre, first, second, point )
len = normalise(vector)
dot = dotProduct(a,b)
dot = dotProductByDimensions( a, b )
dot = dotProductByCos( a, b )
cross = crossProduct( a, b )
cross = b2CrossVectVect( a, b )
{x,y} = b2CrossVectFloat( a, s )
{x,y} = b2CrossFloatVect( s, a )
fractionOf( a, b )
percentageOf( a, b )
midPoint( pts )
midPointOfShape( pts )
isOnRight( north, south, point )
reflect( north, south, point )
math.doLinesIntersect( a, b, c, d )
GetClosestPoint( A, B, P, segmentClamp )
area = polygonArea( points )
pointInPolygon( points, dot )
pointInPolygons( polygons, dot )
isPolyClockwise( pointList )
polygonFill( points, closed, perPixel, width, height, col )
pixelFill( points, closed, perPixel, width, height )
math.clamp( val, low, high )
forcesByAngle(totalForce, angle)
]]--
--[[
Deprecated (see revisions for code):
rad = convertDegreesToRadians( degrees )
deg = convertRadiansToDegrees( radians )
polygonFill( points, closed, perPixel, width, height, col )
]]--
-- rounds up to the nearest multiple of the number
math.nearest = function( number, multiple )
return math.round( (number / multiple) ) * multiple
end
-- returns the distance between points a and b
-- b is optional. assumes distance from 0,0 if b is nil
math.lengthOf = function( a, b )
if (b == nil) then
b = {x=0,y=0}
end
local width, height = b.x-a.x, b.y-a.y
return (width*width + height*height)^0.5 -- math.sqrt(width*width + height*height)
-- nothing wrong with math.sqrt, but I believe the ^.5 is faster
end
-- rotates point around the centre by degrees
-- rounds the returned coordinates using math.round() if round == true
-- returns new coordinates object
local function rotateAboutPoint( point, degrees, center )
local pt = { x=point.x - centre.x, y=point.y - centre.y }
pt = math.rotateTo( pt, degrees )
pt.x, pt.y = pt.x + centre.x, pt.y + centre.y
return pt
end
-- rotates a point around the (0,0) point by degrees
-- returns new point object
-- center: optional
math.rotateTo = function( point, degrees, center )
if (center ~= nil) then
return rotateAboutPoint( point, degrees, center )
else
local x, y = point.x, point.y
local theta = math.rad( degrees )
local pt = {
x = x * math.cos(theta) - y * math.sin(theta),
y = x * math.sin(theta) + y * math.cos(theta)
}
return pt
end
end
local PI = (4*math.atan(1))
local quickPI = 180 / PI
-- returns the degrees between two points
-- note: 0 degrees is 'east'
local function angleBetweenPoints( a, b )
local x, y = b.x - a.x, b.y - a.y
return math.angleOf( { x=x, y=y } )
end
-- returns the degrees between (0,0) and pt
-- note: 0 degrees is 'east'
-- center: optional
math.angleOf = function( center, pt )
if (pt == nil) then
pt = center
local angle = math.atan2( pt.y, pt.x ) * quickPI -- 180 / PI -- math.pi
if angle < 0 then angle = 360 + angle end
return angle
else
return angleBetweenPoints( center, pt )
end
end
-- Brent Sorrentino
-- Returns the angle between the objects
local function angleBetween ( srcObj, dstObj )
local xDist = dstObj.x - srcObj.x
local yDist = dstObj.y - srcObj.y
local angleBetween = math.deg( math.atan( yDist / xDist ) )
if ( srcObj.x < dstObj.x ) then
angleBetween = angleBetween + 90
else
angleBetween = angleBetween - 90
end
return angleBetween
end
--[[
Description:
Extends the point away from or towards the origin to the length of len.
Params:
max =
If param max is nil then the lenOrMin value is the distance to calculate the point's location
If param max is not nil then the lenOrMin value is the minimum clamping distance to extrude to
lenOrMin = the length or the minimum length to extrude the point's distance to
max = the maximum length to extrude to
Returns:
{x,y} = extruded point
]]--
function extrudeToLen( origin, point, lenOrMin, max )
local length = lengthOf( origin, point )
if (length == 0) then
return origin.x, origin.y
end
local len = lenOrMin
if (max ~= nil) then
if (length < lenOrMin) then
len = lenOrMin
elseif (length > max) then
len = max
else -- the point is within the min/max clamping range
return point.x, point.y
end
end
local factor = len / length
local x, y = (point.x - origin.x) * factor, (point.y - origin.y) * factor
return x + origin.x, y + origin.y, x, y
end
-- returns the smallest angle between the two angles
-- ie: the difference between the two angles via the shortest distance
-- returned value is signed: clockwise is negative, anticlockwise is positve
-- returned value wraps at +/-180
-- Example code to rotate a display object by touch:
--[[
-- called in the "moved" phase of touch event handler
local a = mathlib.angleBetweenPoints( target, target.prevevent )
local b = mathlib.angleBetweenPoints( target, event )
local d = mathlib.smallestAngleDiff( a, b )
target.prev = event
target.rotation = target.rotation - d
]]--
function smallestAngleDiff( target, source )
local a = target - source
if (a > 180) then
a = a - 360
elseif (a < -180) then
a = a + 360
end
return a
end
-- Returns the angle in degrees between the first and second points, measured at the centre
-- Always a positive value
function angleAt( centre, first, second )
local a, b, c = centre, first, second
local ab = math.lengthOf( a, b )
local bc = math.lengthOf( b, c )
local ac = math.lengthOf( a, c )
local angle = math.deg( math.acos( (ab*ab + ac*ac - bc*bc) / (2 * ab * ac) ) )
return angle
end
-- Returns true if the point is within the angle at centre measured between first and second
function isPointInAngle( centre, first, second, point )
local range = angleAt( centre, first, second )
local a = angleAt( centre, first, point )
local b = angleAt( centre, second, point )
-- print(range,a+b)
return math.round(range) >= math.round(a + b)
end
--[[
Performs unit normalisation of a vector.
Description:
Unit normalising is basically converting the length of a line to be a fraction of 1.0
This function modified the vector value passed in and returns the length as returned by lengthOf()
Note:
Can also be performed like this:
function Normalise(vector)
local x,y = x/(x^2 + y^2)^(1/2), y/(x^2 + y^2)^(1/2)
local unitVector = {x=x,y=y}
return unitVector
end
Ref:
http://www.fundza.com/vectors/normalize/index.html
]]--
math.normalise = function( vector )
local len = math.lengthOf( vector )
vector.x = vector.x / len
vector.y = vector.y / len
return len
end
--[[
Calculates the dot product of two lines. The lines are provided as {a,b}
Each end point of the line objects are of the format {x,y}
Params:
a - first line, format: {a,b}
b - second line, format: {a,b}
Example:
print(dotProduct(
{a={x=0,y=0},b={x=101,y=5}},
{a={x=0,y=0},b={x=51,y=10}}
))
Ref:
http://www.mathsisfun.com/algebra/vector-calculator.html
]]--
function dotProduct( a, b )
-- get dimensions
local ax, ay = a.b.x-a.a.x, a.b.y-a.a.y
local bx, by = b.b.x-b.a.x, b.b.y-b.a.y
-- multiply the x's, multiply the y's, then add
local dot = ax * bx + ay * by
return dot
end
--[[
Calculates the dot product of a pair of vectors.
Example:
local dot = dotProduct( {x=10,y=5}, {x=5,y=10} )
Ref:
http://rosettacode.org/wiki/Dot_product#Lua
]]--
function dotProduct(a, b)
--[[local ret = 0
for i = 1, #a do
ret = ret + a[i] * b[i]
end
return ret]]--
return a.x*b.x + a.y*b.y + (a.z or 0)*(b.z or 0)
end
--[[
Dot product of two lengths.
Params:
lenA - Length A
lenB - Length B
deg - Angle between points A and B in degrees
Returns:
Dot product.
Ref:
http://www.mathsisfun.com/algebra/vectors-dot-product.html
]]--
math.dotProductByLenAngle = function( lenA, lenB, deg )
return lenA * lenB * math.cos(deg)
end
--[[
Calculates the dot product of two lines. The lines are provided as {a,b}
Each end point of the line objects are of the format {x,y}
This function implements the simple form of the dot product calculation: a · b = ax × bx + ay × by
Params:
a - first line, format: {a,b}
b - second line, format: {a,b}
Example:
print(dotProductByDimensions(
{a={x=0,y=0},b={x=101,y=5}},
{a={x=0,y=0},b={x=51,y=10}}
))
Ref:
http://www.mathsisfun.com/algebra/vectors-dot-product.html
http://www.mathsisfun.com/algebra/vector-calculator.html
]]--
math.dotProductByDimensions = function( a, b )
-- get dimensions
local ax, ay = a.b.x-a.a.x, a.b.y-a.a.y
local bx, by = b.b.x-b.a.x, b.b.y-b.a.y
-- multiply the x's, multiply the y's, then add
local dot = ax * bx + ay * by
return dot
end
--[[
Calculates the dot product of two vectors. The vectors are provided as {{x,y},{x,y}}
Each end point of the line objects are of the format {x,y}
This function implements the COS form of the dot product calculation: a · b = |a| × |b| × cos(?)
Params:
a - first vector, format: {x,y}
b - second vector, format: {x,y}
Example:
print(dotProductByCos(
{a={x=10,y=5},b={x=5,y=10}}
))
Ref:
http://www.mathsisfun.com/algebra/vectors-dot-product.html
http://www.mathsisfun.com/algebra/vector-calculator.html
]]--
function dotProductByCos( a, b )
-- define centre point
local centre = {x=0,y=0}
-- get angle at intersection
local angle = angleAt( centre, a, b )
-- get vectors (lengths from 0,0)
local lena = lengthOf( centre, a )
local lenb = lengthOf( centre, b )
-- multiply the x's, multiply the y's, then add
local dot = lena * lenb * math.cos( angle )
return dot
end
--[[
Description:
Calculates the cross product of a vector.
Ref:
http://www.math.ntnu.no/~stacey/documents/Codea/Library/Vec3.lua
]]--
function crossProduct( a, b )
local x, y, z
x = a.y * (b.z or 0) - (a.z or 0) * b.y
y = (a.z or 0) * b.x - a.x * (b.z or 0)
z = a.x * b.y - a.y * b.x
return { x=x, y=y, z=z }
end
--[[
Description:
Perform the cross product on two vectors. In 2D this produces a scalar.
Params:
a: {x,y}
b: {x,y}
Ref:
http://www.iforce2d.net/forums/viewtopic.php?f=4&t=79&sid=b9ecd62533361594e321de04b3929d4f
]]--
function b2CrossVectVect( a, b )
return a.x * b.y - a.y * b.x;
end
--[[
Description:
Perform the cross product on a vector and a scalar. In 2D this produces a vector.
Params:
a: {x,y}
b: float
Ref:
http://www.iforce2d.net/forums/viewtopic.php?f=4&t=79&sid=b9ecd62533361594e321de04b3929d4f
]]--
function b2CrossVectFloat( a, s )
return { x = s * a.y, y = -s * a.x }
end
--[[
Description:
Perform the cross product on a scalar and a vector. In 2D this produces a vector.
Params:
a: float
b: {x,y}
Ref:
http://www.iforce2d.net/forums/viewtopic.php?f=4&t=79&sid=b9ecd62533361594e321de04b3929d4f
]]--
function b2CrossFloatVect( s, a )
return { x = -s * a.y, y = s * a.x }
end
-- Returns b represented as a fraction of a.
-- Eg: If a is 1000 and b is 900 the returned value is 0.9
-- Often the returned value would be used in a multiplication of another value, usually a distance value.
math.fractionOf = function( a, b )
return b / a
end
-- Returns b represented as a percentage of a.
-- Eg: If a is 1000 and b is 900 the returned value is 90
-- Use: This is useful in determining how far something should be moved to complete a certain distance.
-- Often the returned value would be used in a division of another value, usually a distance value.
math.percentageOf = function( a, b )
return fractionOf(a, b) * 100
end
--[[
Description:
Calculates the average of all the x's and all the y's and returns the average centre of all points.
Works with a display group or table proceeding { {x,y}, {x,y}, ... }
Params:
pts = list of {x,y} points to get the average middle point from
Returns:
{x,y} = average centre location of all the points
]]--
function midPoint( ... )
local pts = arg
local x, y, c = 0, 0, #pts
if (pts.numChildren and pts.numChildren > 0) then c = pts.numChildren end
for i=1, c do
x = x + pts[i].x
y = y + pts[i].y
end
return { x=x/c, y=y/c }
end
--[[
Description:
Calculates the average of all the x's and all the y's and returns the average centre of all points.
Works with a table proceeding {x,y,x,y,...} as used with display.newLine or physics.addBody
Params:
pts = table of x,y values in sequence
Returns:
x, y = average centre location of all points
]]--
function midPointOfShape( pts )
local x, y, c, t = 0, 0, #pts, #pts/2
for i=1, c-1, 2 do
x = x + pts[i]
y = y + pts[i+1]
end
return x/t, y/t
end
-- returns true when the point is on the right of the line formed by the north/south points
function isOnRight( north, south, point )
local a, b, c = north, south, point
local factor = (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x)
return factor > 0, factor
end
-- reflect point across line from north to south
function reflect( north, south, point )
local x1, y1, x2, y2 = north.x, north.y, south.x, south.y
local x3, y3 = point.x, point.y
local x4, y4 = 0, 0 -- reflected point
local dx, dy, t, d
dx = y2 - y1
dy = x1 - x2
t = dx * (x3 - x1) + dy * (y3 - y1)
t = t / (dx * dx + dy * dy)
x = x3 - 2 * dx * t
y = y3 - 2 * dy * t
return { x=x, y=y }
end
-- This is based off an explanation and expanded math presented by Paul Bourke:
-- It takes two lines as inputs and returns true if they intersect, false if they don't.
-- If they do, ptIntersection returns the point where the two lines intersect.
-- params a, b = first line
-- params c, d = second line
-- param ptIntersection: The point where both lines intersect (if they do)
-- http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
-- http://paulbourke.net/geometry/pointlineplane/
math.doLinesIntersect = function( a, b, c, d )
-- parameter conversion
local L1 = {X1=a.x,Y1=a.y,X2=b.x,Y2=b.y}
local L2 = {X1=c.x,Y1=c.y,X2=d.x,Y2=d.y}
-- Denominator for ua and ub are the same, so store this calculation
local d = (L2.Y2 - L2.Y1) * (L1.X2 - L1.X1) - (L2.X2 - L2.X1) * (L1.Y2 - L1.Y1)
-- Make sure there is not a division by zero - this also indicates that the lines are parallel.
-- If n_a and n_b were both equal to zero the lines would be on top of each
-- other (coincidental). This check is not done because it is not
-- necessary for this implementation (the parallel check accounts for this).
if (d == 0) then
return false
end
-- n_a and n_b are calculated as seperate values for readability
local n_a = (L2.X2 - L2.X1) * (L1.Y1 - L2.Y1) - (L2.Y2 - L2.Y1) * (L1.X1 - L2.X1)
local n_b = (L1.X2 - L1.X1) * (L1.Y1 - L2.Y1) - (L1.Y2 - L1.Y1) * (L1.X1 - L2.X1)
-- Calculate the intermediate fractional point that the lines potentially intersect.
local ua = n_a / d
local ub = n_b / d
-- The fractional point will be between 0 and 1 inclusive if the lines
-- intersect. If the fractional calculation is larger than 1 or smaller
-- than 0 the lines would need to be longer to intersect.
if (ua >= 0 and ua <= 1 and ub >= 0 and ub <= 1) then
local x = L1.X1 + (ua * (L1.X2 - L1.X1))
local y = L1.Y1 + (ua * (L1.Y2 - L1.Y1))
return true, {x=x, y=y}
end
return false
end
-- returns the closest point on the line between A and B from point P
function GetClosestPoint( A, B, P, segmentClamp )
local AP = { x=P.x - A.x, y=P.y - A.y }
local AB = { x=B.x - A.x, y=B.y - A.y }
local ab2 = AB.x*AB.x + AB.y*AB.y
local ap_ab = AP.x*AB.x + AP.y*AB.y
local t = ap_ab / ab2
if (segmentClamp or true) then
if (t < 0.0) then
t = 0.0
elseif (t > 1.0) then
t = 1.0
end
end
local Closest = { x=A.x + AB.x * t, y=A.y + AB.y * t }
return Closest
end
-- calculates the area of a polygon
-- will not calculate area for self-intersecting polygons (where vertices cross each other)
-- points: table of {x,y} points
-- ref: http://www.mathopenref.com/coordpolygonarea2.html
math.polygonArea = function( points )
local count = #points
if (points.numChildren) then
count = points.numChildren
end
local area = 0 -- Accumulates area in the loop
local j = count -- The last vertex is the 'previous' one to the first
for i=1, count do
area = area + (points[j].x + points[i].x) * (points[j].y - points[i].y)
j = i -- j is previous vertex to i
end
return math.abs(area/2)
end
-- Returns true if the dot { x,y } is within the polygon defined by points table { {x,y},{x,y},{x,y},... }
function pointInPolygon( points, dot )
local i, j = #points, #points
local oddNodes = false
for i=1, #points do
if ((points[i].y < dot.y and points[j].y>=dot.y
or points[j].y< dot.y and points[i].y>=dot.y) and (points[i].x<=dot.x
or points[j].x<=dot.x)) then
if (points[i].x+(dot.y-points[i].y)/(points[j].y-points[i].y)*(points[j].x-points[i].x)<dot.x) then
oddNodes = not oddNodes
end
end
j = i
end
return oddNodes
end
-- converts a table of {x,y,x,y,...} to points {x,y}
math.tableToPoints = function( tbl )
local pts = {}
for i=1, #tbl-1, 2 do
pts[#pts+1] = { x=tbl[i], y=tbl[i+1] }
end
return pts
end
-- converts a list of points {x,y} to a table of coords {x,y,x,y,...}
math.pointsToTable = function( pts )
local tbl = {}
for i=1, #pts do
tbl[#tbl+1] = pts[i].x
tbl[#tbl+1] = pts[i].y
end
return tbl
end
-- Return true if the dot { x,y } is within any of the polygons in the list
function pointInPolygons( polygons, dot )
for i=1, #polygons do
if (pointInPolygon( polygons[i], dot )) then
return true
end
end
return false
end
-- Returns true if the points in the polygon wind clockwise
-- Does not consider that the vertices may intersect (lines between points might cross over)
function isPolyClockwise( pointList )
local area = 0
if (type(pointList[1]) == "number") then
pointList = math.convertCoordsToTable( pointList )
print("#pointList",#pointList)
end
for i = 1, #pointList-1 do
local pointStart = { x=pointList[i].x - pointList[1].x, y=pointList[i].y - pointList[1].y }
local pointEnd = { x=pointList[i + 1].x - pointList[1].x, y=pointList[i + 1].y - pointList[1].y }
area = area + (pointStart.x * -pointEnd.y) - (pointEnd.x * -pointStart.y)
end
return (area < 0)
end
-- return a value clamped between a range
math.clamp = function( val, low, high )
if (val < low) then return low end
if (val > high) then return high end
return val
end
-- Forces to apply based on total force and desired angle
-- http://developer.anscamobile.com/code/virtual-dpadjoystick-template
function forcesByAngle(totalForce, angle)
local forces = {}
local radians = -math.rad(angle)
forces.x = math.cos(radians) * totalForce
forces.y = math.sin(radians) * totalForce
return forces
end
-- returns true if the middle point is concave when viewed as part of a polygon
-- a, b, c are {x,y} points
function isPointConcave(a,b,c)
local small = smallestAngleDiff( math.angleOf(b,a), math.angleOf(b,c) )
if (small < 0) then
return false
else
return true
end
end
-- returns true if the polygon is concave
-- assumes points are {x,y} tables
-- returns nil if there are not enough points ( < 3 )
-- can accept a display group
function isPolygonConcave( points )
local count = points.numChildren
if (count == nil) then
count = #points
end
if (count < 3) then
return nil
end
local isConcave = true
for i=1, count do
if (i == 1) then
isConcave = isPointConcave( points[count],points[1],points[2] )
elseif (i == count) then
isConcave = isPointConcave( points[count-1],points[count],points[1] )
else
isConcave = isPointConcave( points[i-1], points[i], points[i+1] )
end
if (not isConcave) then
return false
end
end
return true
end
-- returns list of points where a polygon intersects with the line a,b
-- assumes polygon is standard display format: { x,y,x,y,x,y,x,y, ... }
-- returns collection of intersection points with the polygon line's index {x,y,lineIndex}
-- sort: true to sort the points into order from a to b
math.polygonLineIntersection = function( polygon, a, b, sort )
local points = {}
for i=1, #polygon-3, 2 do
local success, pt = math.doLinesIntersect( a, b, { x=polygon[i], y=polygon[i+1] }, { x=polygon[i+2], y=polygon[i+3] } )
if (success) then
pt.lineIndex = i
points[ #points+1 ] = pt
end
end
if (sort) then
table.sort( points, function(a,b) return math.lengthOf(e,a) > math.lengthOf(e,b) end )
end
return points
end
@cxw42
Copy link

cxw42 commented May 31, 2018

Thank you! What is the license?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment