Last active
May 12, 2024 21:56
-
-
Save xeraa/d114c0bee0335fdcfe120f25870e2199 to your computer and use it in GitHub Desktop.
Elasticsearch example for chunked documents to multi-vectors and two different retrieval strategies
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
DELETE my-long-text-index | |
PUT my-long-text-index | |
{ | |
"mappings": { | |
"properties": { | |
"my_long_text_field": { | |
"type": "nested", //because there can be multiple vectors per doc | |
"properties": { | |
"vector": { | |
"type": "dense_vector" //the vector used for ranking | |
}, | |
"text_chunk": { | |
"type": "text" //the text from which the vector was created | |
} | |
} | |
} | |
} | |
} | |
} | |
// We'll search for the vector [5,5] | |
// Document with the closest chunk | |
PUT my-long-text-index/_doc/1 | |
{ | |
"my_long_text_field" : [ | |
{ | |
"vector" : [5,4], | |
"text_chunk" : "doc 1 chunk 1" | |
}, | |
{ | |
"vector" : [5,1], | |
"text_chunk" : "doc 1 chunk 2" | |
}, | |
{ | |
"vector" : [5,0], | |
"text_chunk" : "doc 1 chunk 3" | |
} | |
] | |
} | |
// Document with the second and third closest chunk | |
PUT my-long-text-index/_doc/2 | |
{ | |
"my_long_text_field" : [ | |
{ | |
"vector" : [5,3], | |
"text_chunk" : "doc 2 chunk 1" | |
}, | |
{ | |
"vector" : [5,2], | |
"text_chunk" : "doc 2 chunk 2" | |
}, | |
{ | |
"vector" : [5,0], | |
"text_chunk" : "doc 2 chunk 3" | |
} | |
] | |
} | |
// Document with the closest aggregated chunks | |
PUT my-long-text-index/_doc/3 | |
{ | |
"my_long_text_field" : [ | |
{ | |
"vector" : [5,1.9], | |
"text_chunk" : "doc 3 chunk 1" | |
}, | |
{ | |
"vector" : [5,1.8], | |
"text_chunk" : "doc 3 chunk 2" | |
}, | |
{ | |
"vector" : [5,1.7], | |
"text_chunk" : "doc 3 chunk 3" | |
} | |
] | |
} | |
GET my-long-text-index/_search | |
{ | |
"knn": { | |
"field": "my_long_text_field.vector", | |
"query_vector": [5,5], | |
"inner_hits":{ | |
"_source": false, | |
"fields": [ "my_long_text_field.text_chunk" | |
], | |
"size": 1 // Best chunk | |
} | |
}, | |
"size": 2, // 2 closest documents | |
"_source": false | |
} | |
GET my-long-text-index/_search | |
{ | |
"knn": { | |
"field": "my_long_text_field.vector", | |
"query_vector": [5,5], | |
"inner_hits":{ | |
"_source": false, | |
"fields": [ "my_long_text_field.text_chunk" | |
], | |
"size": 2 // 2 best chunks | |
} | |
}, | |
"size": 1, // Best document | |
"_source": false | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment