Created
May 21, 2020 19:16
-
-
Save xhluca/cd97178f007cfdd0ef7d5a594b81e93f to your computer and use it in GitHub Desktop.
Dash Text to Speech
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Speech Synthesis with Dash. This will only work with a Nvidia GPU. | |
Requirements (put them in requirements.txt): | |
apex | |
dash | |
numpy | |
scipy | |
torch | |
""" | |
import base64 | |
import time | |
import io | |
from apex import amp | |
import dash | |
import dash_core_components as dcc | |
import dash_html_components as html | |
from dash.dependencies import Input, Output, State | |
import numpy as np | |
from scipy.io.wavfile import write | |
import torch | |
# Load model | |
tacotron2 = torch.hub.load('nvidia/DeepLearningExamples:torchhub', 'nvidia_tacotron2') | |
tacotron2 = tacotron2.to('cuda') | |
tacotron2 = amp.initialize(tacotron2, opt_level="O1") | |
tacotron2.eval() | |
waveglow = torch.hub.load('nvidia/DeepLearningExamples:torchhub', 'nvidia_waveglow') | |
waveglow = waveglow.remove_weightnorm(waveglow) | |
waveglow = waveglow.to('cuda') | |
waveglow = amp.initialize(waveglow, opt_level="O1") | |
waveglow.eval() | |
# Dash app starts here | |
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] | |
app = dash.Dash(__name__, external_stylesheets=external_stylesheets) | |
app.layout = html.Div(children=[ | |
html.H1(children='Dash Text-to-Speech'), | |
dcc.Textarea( | |
id='textarea-input', | |
value=text, | |
style={'width': '100%', 'height': '45vh'} | |
), | |
dcc.Loading([ | |
html.Button("Generate", id='button'), | |
html.Audio(id='audio-out', controls=True) | |
]) | |
]) | |
@app.callback(Output("audio-out", "src"), | |
[Input("button", "n_clicks")], | |
[State("textarea-input", "value")]) | |
def generate_audio(n_clicks, text): | |
if text == "": | |
text = "Sorry, there's nothing in the text input. Please write something." | |
t0 = time.time() | |
# preprocessing | |
sequence = np.array(tacotron2.text_to_sequence(text, ['english_cleaners']))[None, :] | |
sequence = torch.from_numpy(sequence).to(device='cuda', dtype=torch.int64) | |
# run the models | |
with torch.no_grad(): | |
_, mel, _, _ = tacotron2.infer(sequence) | |
audio = waveglow.infer(mel) | |
audio_numpy = audio[0].data.cpu().numpy() | |
rate = 22050 | |
t1 = time.time() | |
buffer = io.BytesIO() | |
write(buffer, rate, audio_numpy) | |
b64 = base64.b64encode(buffer.getvalue()) | |
sound = "data:audio/x-wav;base64," + b64.decode("ascii") | |
t2 = time.time() | |
print(f"Completed in {t2-t0:.3f}s. Generation took {t1-t0:.3f}s, file creation took {t2-t1:.3f}s") | |
return sound | |
if __name__ == "__main__": | |
app.run_server(debug=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment