Last active
August 29, 2015 14:02
-
-
Save xiangze/3f546e57b53e4bc480b7 to your computer and use it in GitHub Desktop.
ParticleFilter which can be input arbitrary ODE(dynamical system)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Sat Jun 14 18:48:17 2014 | |
@author: xiangze | |
""" | |
import numpy as np | |
#from itertools import accumulate | |
def resample(w): | |
cum=[0]+[int(sum(w[:i+1])*len(w)/sum(w)) for i in xrange(len(w))] | |
print "cum",cum | |
return [i for j in xrange(cum[i],cum[i+1]) for i in xrange(len(w))] | |
def genlikehood(y,sigma): | |
return lambda t,x:1/(np.sqrt(2*np.pi)*sigma)*np.exp(-np.dot(y[t,]-x,y[t,]-x))/(2*sigma**2) | |
def ParticleFilter(init,particlesize,dim,datasize,odein,likehood,lag=0,debugout=True): | |
totloglikehood=0 | |
dims=(particlesize,lag+1,dim) | |
x0=np.array([np.array([init,]*(lag+1)),]*particlesize) | |
x =np.ndarray(dims) | |
xs=x0[:,0,:];xlag=[];ws=[];idxx=[] | |
for t in xrange(datasize): | |
#Prediction : p(x_{t}|x_{t-1}) | |
for i in xrange(particlesize): | |
x[i,0,:] =odein(x0[i,0,:])[-1] | |
x[i,1:datasize,:]=x0[i,0:lag,:] | |
#Likelihood : p(y_{t}|y_{1:t}) | |
w=[likehood(t,x[ii,0,:]) for ii in xrange(particlesize)] | |
totloglikehood+=np.log(sum(w)/particlesize) | |
#resampling | |
index=resample(w/sum(w)) | |
#Filtering : p(x_{t}|y_{t}) | |
print len(w),index,len(index) | |
assert(len(index)==particlesize) | |
for i,ii in enumerate(index): | |
x0[i,:,:]=x[ii,:,:] | |
# print t,x0[:,0,:] | |
xs=np.dstack([xs,x0[:,0,:]]) | |
if(debugout): | |
xlag.append(x) | |
ws.append(w) | |
idxx.append(index) | |
size={"data":datasize,"dim":dim} | |
return {"loglikehood":totloglikehood,"size":size,"lag":lag,"xlag":xlag,"x":xs,"w":ws,"index":idxx} | |
#http://en.wikipedia.org/wiki/Rossler_attractor | |
#http://www.scholarpedia.org/article/Rossler_attractor | |
def rossler(init=[0,5,0],num=100,a=0.2,b=0.2,c=5.7,dt=0.05,sigma=0.0): | |
cc=[] | |
x=init[0] | |
y=init[1] | |
z=init[2] | |
noise=np.array([0,0,0]) | |
for t in range(num): | |
cc.append([x,y,z]) | |
if(sigma>0.0): | |
noise=np.random.normal(scale=sigma,size=3) | |
x=x+dt*((-y-z)+noise[0]) | |
y=y+dt*(( x+a*y)+noise[1]) | |
z=z+dt*(( b+z*(x-c))+noise[2]) | |
return cc | |
def _rossler_n(init,term,interval,a=0.2,b=0.2,c=5.7,dt=0.05,sigma=0.0): | |
t=[init] | |
for i in xrange(0,term/interval): | |
t.append(rossler(init=t[i],num=interval,a=a,b=b,c=c,dt=dt,sigma=sigma)[-1]) | |
return t | |
def genrossler_n(term,interval,a=0.2,b=0.2,c=5.7,dt=0.05,sigma=0.0): | |
return lambda x:_rossler_n(x,term,interval,a,b,c,dt,sigma) | |
draw=True | |
if __name__ == "__main__": | |
particlesize=20 | |
lag=2 | |
syssigma=0.01 #system noize | |
sigma=0.1#observation noise | |
term=1500 | |
interval=100 | |
dt=0.05 | |
a,b,c=0.1,0.1,5.7 | |
# a,b,c=0.2,0.2,5.7 | |
rossler_n=genrossler_n(term,interval,a,b,c,dt) | |
#original time series | |
x=rossler_n([0,5,0]) | |
#observed time series | |
y=np.array([[i+np.random.normal(0,sigma) for i in p] for p in x ]) | |
likehood=genlikehood(y,sigma) | |
rossler_nn=genrossler_n(interval,interval,a,b,c,dt,syssigma) | |
pf=ParticleFilter(init=np.random.normal(size=3),particlesize=particlesize,\ | |
dim=3, datasize=len(y), odein=rossler_nn ,likehood=likehood,lag=lag) | |
print pf['x'].shape | |
z=[[pf['x'][i,0,t+1] for t in xrange(np.array(pf['x']).shape[2]-1)] for i in xrange(particlesize)] | |
print y.shape | |
for i in pf['w']:print i | |
# for i in pf['index']:print i | |
if(draw): | |
import matplotlib.pyplot as plt | |
#observed time series | |
plt.plot(y[:,0],c="red") | |
plt.plot(y[:,0],'ro',c="red") | |
##infered time series | |
for i in xrange(particlesize): | |
plt.plot(z[i],c="green") | |
plt.plot(z[i],'ro',c="green") | |
plt.show() | |
##plt.savefig(filename+'.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment