Created
June 4, 2021 12:50
-
-
Save xiaodaigh/5e5710d6e4233c9d2334aa7773b83b0e to your computer and use it in GitHub Desktop.
Tang Dynasty poetry
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Gumbo, Cascadia, HTTP | |
using Serialization | |
urls= ["https://www.shicimingju.com/shicimark/tangshisanbaishou.html"] | |
urls = vcat(urls, ["https://www.shicimingju.com/shicimark/tangshisanbaishou_$(i)_0__0.html" for i in 2:16]) | |
function get_chars(poem::Vector{<:AbstractString})::Set{Char} | |
mapreduce(Set, union, poem) | |
end | |
function download_poems(url, i) | |
response = response = HTTP.get(url) | |
# the body is the html content | |
parsed_html = parsehtml(String(response.body)) | |
poems = eachmatch(sel"div.shici_content", parsed_html.root) |> collect .|> nodeText | |
poems_cleaned = split.(strip.(poems), Ref([',','。','!',';','?',' ',',','?','\n'])) | |
serialize("c:/data/poems/$i.jls", poems_cleaned) | |
#mapreduce(get_chars, union, poems_cleaned) | |
end | |
@time for (i, url) in enumerate(urls) | |
download_poems(url, i) | |
end | |
function get_chars_from_serialized_poems(i) | |
poems_cleaned = deserialize("c:/data/poems/$i.jls") | |
mapreduce(get_chars, union, poems_cleaned) | |
end | |
const UNIQUE_CHARS = mapreduce(get_chars_from_serialized_poems, union, 1:16) |> collect |> sort! | |
serialize("UNIQUE_CHARS", UNIQUE_CHARS) | |
function make_stanza_training(stanza) | |
cs = Int16.(indexin(collect(stanza), UNIQUE_CHARS)) | |
end | |
function make_poem_training(poem) | |
chars = filter(x -> length(x)>0, map(make_stanza_training, poem)) | |
mapreduce(chars1->chars1[1:end-1], vcat, chars), mapreduce(chars1->chars1[2:end], vcat, chars) | |
end | |
function make_poems_training(poems) | |
x = map(make_poem_training, poems) | |
mapreduce(x->x[1], vcat, x), mapreduce(x->x[2], vcat, x) | |
end | |
function make_data(i) | |
poems = deserialize("c:/data/poems/$i.jls") | |
make_poems_training(poems) | |
end | |
tmp = map(make_data, 1:16) | |
x = mapreduce(x->x[1], vcat, tmp) | |
y = mapreduce(x->x[2], vcat, tmp) | |
serialize("x", x) | |
serialize("y", y) | |
()->println("training $(loss(xmc, ymc))"), 10)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Serialization | |
using Flux | |
using Flux: logitbinarycrossentropy, throttle, binarycrossentropy | |
using CUDA | |
CUDA.allowscalar(false) | |
x = deserialize("x") | |
y = deserialize("y") | |
using SparseArrays | |
xm = sparse(x, 1:length(x), 1.0, length(x), length(x)); | |
ym = sparse(y, 1:length(y), Int32(1), length(y), length(y)); | |
xmc=cu(xm |> collect) | |
ymc=cu(ym |> collect) | |
model = Chain( | |
Dense(length(x), 32), | |
Dense(32, length(x)), | |
) |> gpu | |
model(xmc) | |
loss(xmc, ymc) = logitbinarycrossentropy(model(xmc), ymc) | |
CUDA.@time meh = loss(xmc, ymc) | |
opt = ADAM() | |
using Flux.Data: DataLoader | |
dl = DataLoader((xmc, ymc), batchsize=256, shuffle=true) | |
# @time Flux.train!(loss, params(model), dl, opt, cb = throttle(()->print(loss(xmc, ymc)), 10)) | |
# @time Flux.@epochs 2 Flux.train!(loss, params(model), dl, opt, cb = throttle(()->print(loss(xmc, ymc)), 10)) | |
# @time Flux.@epochs 8 Flux.train!(loss, params(model), dl, opt, cb = throttle(()->print(loss(xmc, ymc)), 10)) | |
# @time Flux.@epochs 88 Flux.train!(loss, params(model), dl, opt, cb = throttle(()->print(loss(xmc, ymc)), 10)) | |
@time Flux.@epochs 888 Flux.train!(loss, params(model), dl, opt, cb = throttle(()->print(loss(xmc, ymc)), 10)) | |
serialize("model", model) | |
UNIQUE_CHARS = deserialize("UNIQUE_CHARS") | |
using CSV, DataFrames | |
CSV.write("ok.csv", DataFrame(ok = UNIQUE_CHARS)) | |
x = zeros(Float64, length(x)) | |
x[2] = 1.0 | |
cmodel = cpu(model) | |
findmax(p)[2] | |
const L = length(x) | |
using StatsBase | |
function write_a_stanza(char::Char, upto=1, jue=7) | |
print(char) | |
id = indexin([char], UNIQUE_CHARS)[1] | |
x = zeros(L) | |
x[id] = 1.0 | |
ecx = exp.(cmodel(x)) | |
p = ecx ./ sum(ecx) | |
next_id = sample(1:L, Weights(p)) | |
next_char = UNIQUE_CHARS[next_id] | |
if upto == jue | |
println() | |
return | |
else | |
return write_a_stanza(next_char, upto+1, jue) | |
end | |
end | |
write_a_stanza(char) | |
begin | |
write_a_stanza('老') | |
write_a_stanza('坡') | |
write_a_stanza('真') | |
write_a_stanza('好') | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment