Created
August 14, 2021 17:19
-
-
Save xieyuheng/e6d45404a0dc8430838f976d2ae64b06 to your computer and use it in GitHub Desktop.
group theory in classical logic
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
export function imply(x: boolean, y: boolean): boolean { | |
return !x || y | |
} | |
export function equ(x: boolean, y: boolean): boolean { | |
return imply(x, y) && imply(y, x) | |
} | |
export abstract class Equivalence<T> { | |
abstract eq(a: T, b: T): boolean | |
reflexive(x: T): boolean { | |
return this.eq(x, x) | |
} | |
symmetric(a: T, b: T): boolean { | |
return equ(this.eq(a, b), this.eq(b, a)) | |
} | |
transitive(a: T, b: T, c: T): boolean { | |
return imply(this.eq(a, b) && this.eq(b, c), this.eq(a, c)) | |
} | |
} | |
export abstract class Group<G> { | |
abstract equivalence: Equivalence<G> | |
eq(a: G, b: G): boolean { | |
return this.equivalence.eq(a, b) | |
} | |
abstract mul(a: G, b: G): G | |
mul_associative(a: G, b: G, c: G): boolean { | |
return this.eq(this.mul(this.mul(a, b), c), this.mul(a, this.mul(b, c))) | |
} | |
abstract id: G | |
identity_of_mul(a: G): boolean { | |
return this.eq(this.mul(this.id, a), a) && this.eq(this.mul(a, this.id), a) | |
} | |
abstract inv(a: G): G | |
inverse_of_mul(a: G): boolean { | |
return ( | |
this.eq(this.mul(this.inv(a), a), a) && | |
this.eq(this.mul(a, this.inv(a)), a) | |
) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment