Last active
May 30, 2023 17:35
-
-
Save ximeg/c8a26538e2a5980d58eb5e192fb77a7a to your computer and use it in GitHub Desktop.
Quantify amount of shaking caused by motorized liquid injection during pTIRF imaging
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# coding: utf-8 | |
import skimage.io as skio | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from os.path import basename, splitext, exists | |
from time import sleep | |
from os import listdir | |
def quantify_shaking(tiff_file, crop=10): | |
# read tiff file | |
img = skio.imread(tiff_file) | |
# crop the central part | |
N, h, w = img.shape | |
_from, _to = 1 - crop / 100.0, 1 + crop / 100.0 | |
img = img[ | |
:, int(h / 2 * _from) : int(h / 2 * _to), int(w / 2 * _from) : int(w / 2 * _to) | |
] | |
Npx = np.prod(img[0].shape) | |
# compute image intensity | |
img_I = img.mean(axis=(1, 2)) | |
img_I = img_I - img_I.min() + img_I.ptp() / 20 | |
# compute normalized intraframe variance | |
img_intraframe_v = img.std(axis=(1, 2)) ** 2 / Npx / img_I | |
# compute interframe variance | |
diff = np.diff(img.astype("float"), axis=0) | |
img_interframe_v = np.std(diff, axis=(1, 2)) ** 2 / Npx | |
# compute ratio of interframe to intraframe variance, then | |
# remove the baseline by taking a derivative and calculating a square | |
return img_I, np.gradient(img_interframe_v / img_intraframe_v[1:]) ** 2 | |
def plot_shaking(tiff_file, **kwargs): | |
img_I, shaking = quantify_shaking(tiff_file, **kwargs) | |
fname = splitext(basename(tiff_file))[0] | |
fig, ax1 = plt.subplots() | |
ax2 = ax1.twinx() | |
ax2.plot(img_I, linewidth=0.75, alpha=0.6, color="darkred") | |
ax2.set_ylabel("Intensity") | |
ax1.plot(shaking, linewidth=0.75) | |
plt.title( | |
f"{fname}\nShaking intensity: {sum(shaking):.1f} a.u. (in {len(np.where(shaking > 10)[0])} frames)" | |
) | |
plt.xlabel("Frame number") | |
ax1.set_ylabel("Shaking, a.u.") | |
fig.patch.set_alpha(1.0) | |
plt.savefig(fname + "_shaking.png", dpi=600, transparent=False) | |
plt.close() | |
pd.DataFrame(dict( | |
intensity=img_I[1:], | |
shaking=shaking) | |
).to_csv(fname + "_shaking.csv") | |
def main(): | |
while True: | |
sleep(0.1) | |
try: | |
for f in listdir("."): | |
name, ext = splitext(f) | |
if ".tif" in ext.lower(): | |
if not exists(f"{name}_shaking.csv"): | |
plot_shaking(f) | |
print(f) | |
except PermissionError: | |
pass | |
except KeyboardInterrupt: | |
break | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment